Informing BC Stakeholders

You are here

Publications Library

  • Source Publication: Earth's Future, doi:10.1002/2017EF000639 Authors: Li, C., X. Zhang, F.W. Zwiers, Y. Fang and A.M. Michalak Publication Date: Oct 2017

    Wet bulb globe temperature (WBGT) accounts for the effect of environmental temperature and humidity on thermal comfort, and can be directly related to the ability of the human body to dissipate excess metabolic heat and thus avoid heat stress. Using WBGT as a measure of environmental conditions conducive to heat stress, we show that anthropogenic influence has very substantially increased the likelihood of extreme high summer mean WBGT in northern hemispheric land areas relative to the climate that would have prevailed in the absence of anthropogenic forcing. We estimate that the likelihood of summer mean WGBT exceeding the observed historical record value has increased by a factor of at least 70 at regional scales due to anthropogenic influence on the climate. We further estimate that, in most northern hemispheric regions, these changes in the likelihood of extreme summer mean WBGT are roughly an order of magnitude larger than the corresponding changes in the likelihood of extreme hot summers as simply measured by surface air temperature. Projections of future summer mean WBGT under the RCP8.5 emissions scenario that are constrained by observations indicate that by 2030s at least 50% of the summers will have mean WBGT higher than the observed historical record value in all the analyzed regions, and that this frequency of occurrence will increase to 95% by mid‐century.

  • Source Publication: Earth's Future, accepted, doi:10.1002/2017EF000639. Authors: Li, C., X. Zhang, F. Zwiers, Y. Fang and A. Micha Publication Date: Oct 2017

    Wet bulb Globe Temperature (WBGT) accounts for the effect of environmental temperature and humidity on thermal comfort, and can be directly related to the ability of the human body to dissipate excess metabolic heat and thus avoid heat stress. Using WBGT as a measure of environmental conditions conducive to heat stress, we show that anthropogenic influence has very substantially increased the likelihood of extreme high summer mean WBGT in northern hemispheric land areas relative to the climate that would have prevailed in the absence of anthropogenic forcing. We estimate that the likelihood of summer mean WGBT exceeding the observed historical record value has increased by a factor of at least 70 at regional scales due to anthropogenic influence on the climate. We further estimate that, in most northern hemispheric regions, these changes in the likelihood of extreme summer mean WBGT are roughly an order of magnitude larger than the corresponding changes in the likelihood of extreme hot summers as simply measured by surface air temperature. Projections of future summer mean WBGT under the RCP8.5 emissions scenario that are constrained by observations indicate that by 2030s at least 50% of the summers will have mean WBGT higher than the observed historical record value in all the analyzed regions, and that this frequency of occurrence will increase to 95% by mid-century.

  • Source Publication: Water Resources Research, 53, 8366–8382, doi:10.1002/2017WR020596 Authors: Bonnet, R., J. Boé, G. Dayon and E. Martin Publication Date: Oct 2017

    Characterizing and understanding the multidecadal variations of the continental hydrological cycle is a challenging issue given the limitation of observed data sets. In this paper, a new approach to derive twentieth century hydrological reconstructions over France with an hydrological model is presented. The method combines the results of long-term atmospheric reanalyses downscaled with a stochastic statistical method and homogenized station observations to derive the meteorological forcing needed for hydrological modeling. Different methodological choices are tested and evaluated. We show that using homogenized observations to constrain the results of statistical downscaling help to improve the reproduction of precipitation, temperature, and river flows variability. In particular, it corrects some unrealistic long-term trends associated with the atmospheric reanalyses. Observationally constrained reconstructions therefore constitute a valuable data set to study the multidecadal hydrological variations over France. Thanks to these reconstructions, we confirm that the multidecadal variations previously noted in French river flows have mainly a climatic origin. Moreover, we show that multidecadal variations exist in other hydrological variables (evapotranspiration, snow cover, and soil moisture). Depending on the region, the persistence from spring to summer of soil moisture or snow anomalies generated during spring by temperature and precipitation variations may explain river flows variations in summer, when no concomitant climate variations exist.

  • Source Publication: The Cryosphere, doi:10.5194/tc-2017-157 Authors: Kushner, P.J., et al. (F.W. Zwiers 24th co-author) Publication Date: Sep 2017

    This study assesses the ability of the Canadian Seasonal to Interannual Prediction System (CanSIPS) and the Canadian Earth-system Model 2 (CanESM2) to predict and simulate snow and sea ice from seasonal to multi-decadal timescales, with a focus on the Canadian sector. To account for observational uncertainty, model structural uncertainty, and internal climate variability, the analysis uses multi-source observations, multiple Earth-System Models (ESMs) in Phase 5 of the Coupled Model Intercomparison Project (CMIP5) archive, and initial condition ensembles of CanESM2 and other models. It is found that the ability of the CanESM2 simulation to capture snow-related climate parameters, such as cold-region temperature and precipitation, lies within the range of currently available international models. Accounting for the considerable disagreement among satellite-era observational datasets on the distribution of snow water equivalent, CanESM2 has too much springtime snow cover over the Canadian land mass, reflecting a broader Northern Hemisphere positive bias. It also exhibits retreat of springtime snow generally greater than observational estimates, after accounting for observational uncertainty and internal variability. Sea ice is biased low in the Canadian Arctic, which makes it difficult to assess the realism of long-term sea-ice trends there. The strengths and weaknesses of the modeling system need to be understood as a practical tradeoff: the Canadian models are relatively inexpensive computationally because of their moderate resolution, thus enabling their use in operational seasonal prediction and for generating large ensembles of multidecadal simulations. Improvements in climate prediction systems like CanSIPS rely not just on simulation quality but also on using novel observational constraints and the ready transfer of research to an operational setting. Improvements in seasonal forecasting practice arising from recent research include accurate initialization of snow and frozen soil, accounting for observational uncertainty in forecast verification, and sea-ice thickness initialization using statistical predictors available in real time.

  • Source Publication: Hydrology and Earth System Sciences, doi:10.5194/hess-2017-531 Authors: Curry, C.L. and F.W. Zwiers Publication Date: Sep 2017

    The Fraser River basin (FRB) of British Columbia is one of the largest and most important watersheds in Western North America, and is home to a rich diversity of biological species and economic assets that depend implicitly upon its extensive riverine habitats. The hydrology of the FRB is dominated by snow accumulation and melt processes, leading to a prominent annual peak streamflow invariably occurring in June–July. However, while annual peak daily streamflow (APF) during the spring freshet in the FRB is historically well correlated with basin-averaged, April 1 snow water equivalent (SWE), there are numerous occurrences of anomalously large APF in below- or near-normal SWE years, some of which have resulted in damaging floods in the region. An imperfect understanding of which other climatic factors contribute to these anomalously large APFs hinders robust projections of their magnitude and frequency.

    We employ the Variable Infiltration Capacity (VIC) process-based hydrological model driven by gridded observations to investigate the key controlling factors of anomalous APF events in the FRB and four of its subbasins that contribute more than 70 % of the annual flow at Fraser-Hope. The relative influence of a set of predictors characterizing the interannual variability of rainfall, snowfall, snowpack (characterized by the annual maximum value, SWEmax), soil moisture and temperature on simulated APF at Hope (the main outlet of the FRB) and at the subbasin outlets is examined within a regression framework. The influence of large-scale climate modes of variability (the Pacific Decadal Oscillation (PDO) and the El Niño-Southern Oscillation (ENSO)) on APF magnitude is also assessed, and placed in context with these more localized controls. The results indicate that next to SWEmax (which strongly controls the annual maximum of soil moisture), the snowmelt rate, the ENSO and PDO indices, and rate of warming subsequent to the date of SWEmax are the most influential predictors of APF magnitude in the FRB and its subbasins. The identification of these controls on annual peak flows in the region may be of use in the context of seasonal prediction or future projected streamflow behaviour.

  • Source Publication: Climatic Change, 144, 143-150, doi:10.1007/s10584-017-2049-2 Authors: Stott, P.A., D.J. Karoly and F.W. Zwiers Publication Date: Aug 2017

    The science of event attribution meets a mounting demand for reliable and timely information about the links between climate change and individual extreme events. Studies have estimated the contribution of human-induced climate change to the magnitude of an event as well as its likelihood, and many types of event have been investigated including heatwaves, floods, and droughts. Despite this progress, such approaches have been criticised for being unreliable and for being overly conservative. We argue that such criticisms are misplaced. Rather, a false dichotomy has arisen between “conventional” approaches and new alternative framings. We have three points to make about the choice of statistical paradigm for event attribution studies. First, different approaches to event attribution may choose to occupy different places on the conditioning spectrum. Providing this choice of conditioning is communicated clearly, the value of such choices depends ultimately on their utility to the user concerned. Second, event attribution is an estimation problem for which either frequentist or Bayesian paradigms can be used. Third, for hypothesis testing, the choice of null hypothesis is context specific. Thus, the null hypothesis of human influence is not inherently a preferable alternative to the usual null hypothesis of no human influence.

  • Authors: Megan C. Kirchmeier-Young, Francis W. Zwiers, Nathan P. Gillett and Alex J. Cannon Publication Date: Jul 2017

    Canada is expected to see an increase in fire risk under future climate projections. Large fires, such as that near Fort McMurray, Alberta in 2016, can be devastating to the communities affected. Understanding the role of human emissions in the occurrence of such extreme fire events can lend insight into how these events might change in the future. An event attribution framework is used to quantify the influence of anthropogenic forcings on extreme fire risk in the current climate of a western Canada region. Fourteen metrics from the Canadian Forest Fire Danger Rating System are used to define the extreme fire seasons. For the majority of these metrics and during the current decade, the combined effect of anthropogenic and natural forcing is estimated to have made extreme fire risk events in the region 1.5 to 6 times as likely compared to a climate that would have been with natural forcings alone.

  • Source Publication: 56, 6, 1625–1641, doi:10.1175/JAMC-D-16-0287.1 Authors: Sobie, S.R. and T.Q. Murdock Publication Date: Jun 2017

    Knowledge from high-resolution daily climatological parameters is frequently sought after for increasingly local climate change assessments. This research investigates whether applying a simple postprocessing methodology to existing statistically downscaled temperature and precipitation fields can result in improved downscaled simulations useful at the local scale. Initial downscaled daily simulations of temperature and precipitation at 10-km resolution are produced using bias correction constructed analogs with quantile mapping (BCCAQ). Higher-resolution (800 m) values are then generated using the simpler climate imprint technique in conjunction with temperature and precipitation climatologies from the Parameter-Elevation Regression on Independent Slopes Model (PRISM). The potential benefit of additional downscaling to 800 m is evaluated using the “Climdex” set of 27 indices of extremes established by the Expert Team on Climate Change Detection and Indices (ETCCDI). These indices are also calculated from weather station observations recorded at 22 locations within southwestern British Columbia, Canada, to evaluate the performance of both the 10-km and 800-m datasets in replicating the observed quantities. In a 30-yr historical evaluation period, Climdex indices computed from 800-m simulated values display reduced error relative to local station observations than those from the 10-km dataset, with the greatest reduction in error occurring at high-elevation sites for precipitation-based indices.

  • Source Publication: The Cryosphere, doi:10.5194/tc-2017-56 Authors: Snauffer, A., W. Hsieh, A. Cannon, and M. Schnorbus Publication Date: Jun 2017

    Estimates of surface snow water equivalent (SWE) in alpine regions with seasonal melts are particularly difficult in areas of high vegetation density, topographic relief and snow accumulations. These three confounding factors dominate much of the province of British Columbia (BC), Canada. An artificial neural network (ANN) was created using as predictors six gridded SWE products previously evaluated for BC: ERA-Interim/Land, GLDAS-2, MERRA, MERRA-Land, GlobSnow and ERA-Interim. Relevant spatiotemporal covariates including survey date, year, latitude, longitude, elevation and grid cell elevation differences were also included as predictors, and observations from manual snow surveys at stations located throughout BC were used as target data. Mean absolute errors (MAEs) and correlations for April surveys were found using cross validation. The ANN using the three best performing SWE products (ANN3) had the lowest mean station MAE across the entire province, improving on the performance of individual products by an average of 53 %. Mean station MAEs and April survey correlations were also found for each of BC’s five physiographic regions. ANN3 outperformed each product as well as product means and multiple linear regression (MLR) models in all regions except for the BC Plains, which has relatively few stations and much lower accumulations than other regions. Subsequent comparisons of the ANN results with predictions generated by the Variable Infiltration Capacity (VIC) hydrologic model found ANN3 to be superior over the entire VIC domain and within most physiographic regions. The superior performance of the ANN over individual products, product means, MLR and VIC was found to be statistically significant across the province.

  • Source Publication: Journal of Climate, 30, 4113-4130, doi:10.1175/JCLI-D-16-0189.1 Authors: Naja , M.R., F.W. Zwiers and N.P. Gillett Publication Date: May 2017

    A detection and attribution analysis on the multidecadal trend in snow water equivalent (SWE) has been conducted in four river basins located in British Columbia (BC). Monthly output from a suite of 10 general circulation models (GCMs) that participated in phase 5 of the Coupled Model Intercomparison Project (CMIP5) is used, including 40 climate simulations with anthropogenic and natural forcing combined (ALL), 40 simulations with natural forcing alone (NAT), and approximately 4200 yr of preindustrial control simulations (CTL). This output was downscaled to 1/16° spatial resolution and daily temporal resolution to drive the Variable Infiltration Capacity hydrologic model (VIC). Observed (manual snow survey) and VIC-reconstructed SWE, which exhibit declines across BC, are projected onto the multimodel ensemble means of the VIC-simulated SWE based on the responses to different forcings using an optimal fingerprinting approach. Results of the detection and attribution analysis shows that these declines are attributable to the anthropogenic forcing, which is dominated by the effect of increases in greenhouse gas concentration, and that they are not caused by natural forcing due to volcanic activity and solar variability combined. Anthropogenic influence is detected in three of the four basins (Fraser, Columbia, and Campbell Rivers) based on the VIC-reconstructed SWE, and in all basins based on the manual snow survey records. The simulations underestimate the observed snowpack trends in the Columbia River basin, which has the highest mean elevation. Attribution is supported by the detection of human influence on the cold-season temperatures that drive the snowpack reductions. These results are robust to the use of different observed datasets and to the treatment of low-frequency variability effects.

  • Source Publication: Journal of Advances in Modeling Earth Systems, 9, 2, 1292-1306, doi:10.1002/2016MS000830 Authors: Ouali, D., F. Chebana and T.B.M.J. Ouarda Publication Date: Apr 2017

    The high complexity of hydrological systems has long been recognized. Despite the increasing number of statistical techniques that aim to estimate hydrological quantiles at ungauged sites, few approaches were designed to account for the possible nonlinear connections between hydrological variables and catchments characteristics. Recently, a number of nonlinear machine‐learning tools have received attention in regional frequency analysis (RFA) applications especially for estimation purposes. In this paper, the aim is to study nonlinearity‐related aspects in the RFA of hydrological variables using statistical and machine‐learning approaches. To this end, a variety of combinations of linear and nonlinear approaches are considered in the main RFA steps (delineation and estimation). Artificial neural networks (ANNs) and generalized additive models (GAMs) are combined to a nonlinear ANN‐based canonical correlation analysis (NLCCA) procedure to ensure an appropriate nonlinear modeling of the complex processes involved. A comparison is carried out between classical linear combinations (CCAs combined with linear regression (LR) model), semilinear combinations (e.g., NLCCA with LR) and fully nonlinear combinations (e.g., NLCCA with GAM). The considered models are applied to three different data sets located in North America. Results indicate that fully nonlinear models (in both RFA steps) are the most appropriate since they provide best performances and a more realistic description of the physical processes involved, even though they are relatively more complex than linear ones. On the other hand, semilinear models which consider nonlinearity either in the delineation or estimation steps showed little improvement over linear models. The linear approaches provided the lowest performances.

  • Source Publication: Nature Geoscience 10, 255–259, doi:10.1038/ngeo2911. Authors: Zhang, X., F.W. Zwiers, G.L. Hui Wan and A.J. Cannon Publication Date: Mar 2017

    Warming of the climate is now unequivocal. The water holding capacity of the atmosphere increases by about 7% per °C of warming, which in turn raises the expectation of more intense extreme rainfall events. Meeting the demand for robust projections for extreme short-duration rainfall is challenging, however, because of our poor understanding of its past and future behaviour. The characterization of past changes is severely limited by the availability of observational data. Climate models, including typical regional climate models, do not directly simulate all extreme rainfall producing processes, such as convection. Recently developed convection-permitting models better simulate extreme precipitation, but simulations are not yet widely available due to their computational cost, and they have their own uncertainties. Attention has thus been focused on precipitation–temperature relationships in the hope of obtaining more robust extreme precipitation projections that exploit higher confidence temperature projections. However, the observed precipitation–temperature scaling relationships have been established almost exclusively by linking precipitation extremes with day-to-day temperature variations. These scaling relationships do not appear to provide a reliable basis for projecting future precipitation extremes. Until better methods are available, the relationship of the atmosphere's water holding capacity with temperature provides better guidance for planners in the mid-latitudes, albeit with large uncertainties.

  • Source Publication: doi:10.1007/s00382-017-3634-9 Authors: C. Seiler, F. W. Zwiers, K. I. Hodges and J. F. Scinocca Publication Date: Mar 2017

    Explosive extratropical cyclones (EETCs) are rapidly intensifying low pressure systems that generate severe weather along North America’s Atlantic coast. Global climate models (GCMs) tend to simulate too few EETCs, perhaps partly due to their coarse horizontal resolution and poorly resolved moist diabatic processes. This study explores whether dynamical downscaling can reduce EETC frequency biases, and whether this affects future projections of storms along North America’s Atlantic coast. A regional climate model (CanRCM4) is forced with the CanESM2 GCM for the periods 1981 to 2000 and 2081 to 2100. EETCs are tracked from relative vorticity using an objective feature tracking algorithm. CanESM2 simulates 38% fewer EETC tracks compared to reanalysis data, which is consistent with a negative Eady growth rate bias (−0.1 day−1). Downscaling CanESM2 with CanRCM4 increases EETC frequency by one third, which reduces the frequency bias to −22%, and increases maximum EETC precipitation by 22%. Anthropogenic greenhouse gas forcing is projected to decrease EETC frequency (−15%, −18%) and Eady growth rate (−0.2 day−1, −0.2 day−1), and increase maximum EETC precipitation (46%, 52%) in CanESM2 and CanRCM4, respectively. The limited effect of dynamical downscaling on EETC frequency projections is consistent with the lack of impact on the maximum Eady growth rate. The coarse spatial resolution of GCMs presents an important limitation for simulating extreme ETCs, but Eady growth rate biases are likely just as relevant. Further bias reductions could be achieved by addressing processes that lead to an underestimation of lower tropospheric meridional temperature gradients.

  • Authors: Norman J. Shippee, Christian Seiler and Francis Zwiers Publication Date: Jan 2017

    Presented by Norman Shippee at the American Meteorological Society's 97th Annual Meeting in January, 2017:  CanSIPS reproduces the overall spatial pattern of cyclone track density found in ERA-Interim. Individual models of CanCM3 and CanCM4 over and under-represent the observed storm track, respectively. CanSIPS mean storm track and spread of track density is well represented, though an overall overprediction of storm track density is evident across the North Pacific, particularly from 45 - 60 deg N. This overprediction of storm track density is present in all components of the CanSIPS system. Moderate to strong correlation between CanSIPS mean storm track density and ERA-Interim track density are found across the primary storm track in the North Pacific and in the primary formation regions for Atlantic cyclones affecting North America (Gulf of Mexico and Cape Hatteras) Most CanSIPS bias in the North Pacific is centralized in the exit regions of the Pacific storm track, localized to Gulf of Alaska and coastal BC.

  • Source Publication: Geoscientific Model Development, 9, 3751-3777 doi:10.5194/gmd-2016-78 Authors: Boer, G.J., D.M. Smith, C. Cassou, F. Doblas-Reyes, G. Danabasoglu, B. Kirtman, Y. Kushnir, M. Kimoto, G.A. Meehl, R. Msadek, W.A. Mueller, K. Taylor and F.W. Zwiers Publication Date: Jan 2017

    The Decadal Climate Prediction Project (DCPP) is a coordinated multi-model investigation into decadal climate prediction, predictability, and variability. The DCPP makes use of past experience in simulating and predicting decadal variability and forced climate change gained from the fifth Coupled Model Intercomparison Project (CMIP5) and elsewhere. It builds on recent improvements in models, in the reanalysis of climate data, in methods of initialization and ensemble generation, and in data treatment and analysis to propose an extended comprehensive decadal prediction investigation as a contribution to CMIP6 (Eyring et al., 2016) and to the WCRP Grand Challenge on Near Term Climate Prediction (Kushnir et al., 2016). The DCPP consists of three components. Component A comprises the production and analysis of an extensive archive of retrospective forecasts to be used to assess and understand historical decadal prediction skill, as a basis for improvements in all aspects of end-toend decadal prediction, and as a basis for forecasting on annual to decadal timescales. Component B undertakes ongoing production, analysis and dissemination of experimental quasi-real-time multi-model forecasts as a basis for potential operational forecast production. Component C involves the organization and coordination of case studies of particular climate shifts and variations, both natural and naturally forced (e.g. the “hiatus”, volcanoes), including the study of the mechanisms that determine these behaviours.

    Groups are invited to participate in as many or as few of the components of the DCPP, each of which are separately prioritized, as are of interest to them. The Decadal Climate Prediction Project addresses a range of scientific issues involving the ability of the climate system to be predicted on annual to decadal timescales, the skill that is currently and potentially available, the mechanisms involved in long timescale variability, and the production of forecasts of benefit to both science and society

  • Source Publication: Journal of Climate, 30, 553-571, doi:10.1175/JCLI-D-16-0412.1 Authors: Kirchmeier-Young, M.C., F.W. Zwiers and N.P. Gillett Publication Date: Dec 2016

    Arctic sea ice extent (SIE) has decreased over recent decades, with record-setting minimum events in 2007 and again in 2012. A question of interest across many disciplines concerns the extent to which such extreme events can be attributed to anthropogenic influences. First, a detection and attribution analysis is performed for trends in SIE anomalies over the observed period. The main objective of this study is an event attribution analysis for extreme minimum events in Arctic SIE. Although focus is placed on the 2012 event, the results are generalized to extreme events of other magnitudes, including both past and potential future extremes. Several ensembles of model responses are used, including two single-model large ensembles. Using several different metrics to define the events in question, it is shown that an extreme SIE minimum of the magnitude seen in 2012 is consistent with a scenario including anthropogenic influence and is extremely unlikely in a scenario excluding anthropogenic influence. Hence, the 2012 Arctic sea ice minimum provides a counterexample to the often-quoted idea that individual extreme events cannot be attributed to human influence.

  • Source Publication: Delivered at the Fall Meeting of the American Geophysical Union, December 2016 Authors: Sobie, S.R. and T.Q. Murdock Publication Date: Dec 2016

    Regional and local governments in British Columbia are recognizing the need to obtain detailed information about the effects of future climate change in their communities. The Pacific Climate Impacts Consortium (PCIC) has been a source for relevant analysis and information focussed on climate projections and impacts in BC since 2005. Recently, PCIC has moved away from preparing reports directly for users and instead worked in a more collaborative framework with several communities. In this new format, PCIC supplies climate projection information and assistance with interpretation, while allowing users to develop assessments tailored to their individual needs. This new structure allows PCIC to be more relevant in informing adaption practices. Our goal is to describe the process and outcomes from several collaborative climate change assessment projects.

  • Source Publication: Presented at the 2016 Fall Meeting of the American Geophysical Union Authors: Curry, C.L. and F.W. Zwiers Publication Date: Dec 2016

    The Fraser River basin (FRB) of British Columbia is one of the largest and most important watersheds in Western North America, and is home to a rich diversity of biological species and economic assets that depend implicitly upon its extensive riverine habitats. The hydrology of the FRB is dominated by snow accumulation and melt processes, leading to a prominent annual peak streamflow invariably occurring in June-July. However, while annual peak daily streamflow (APDF) during the spring freshet in the FRB is historically well correlated with basin-averaged, annual maximum snow water equivalent (SWEmax), there are numerous occurrences of anomalously large APDF in below- or near-normal SWEmax years, some of which have resulted in damaging floods in the region. An imperfect understanding of which other climatic factors contribute to these anomalously large APDFs complicates future projections of streamflow magnitude and frequency.

    We employ the Variable Infiltration Capacity (VIC) process-based hydrological model driven by both observations and an ensemble of CMIP3 climate models in an attempt to discover the proximate causes of anomalous APDF events in the FRB. At several hydrometric stations representing a range of elevations, the relative importance of a set of predictors characterizing the magnitude and timing of rainfall, snowfall, and temperature is examined within a regression framework. The results indicate that next to the magnitude of SWEmax, the rate of warming subsequent to the date of SWEmax is the most influential variable for predicting APDF magnitudes in the lower FRB. Finally, the role of large-scale climate modes of variability for APDF magnitude and timing in the basin will be briefly discussed.

  • Authors: Shumlich, M.J. and T.Q. Murdock Publication Date: Nov 2016

    Regional climate service providers such as the Pacific Climate Impacts Consortium (PCIC) have often produced “grey literature” scientific project reports and impact assessments for the regional stakeholders they serve. These reports are suitable for those with some experience in adaptation and climate science. However, for the broader audience of policymakers, planners and the general public these reports are often too technical to be of use. To address the inaccessibility of these reports and provide usable information for decision making, PCIC has taken three main approaches. The first of these approaches is producing high-level summary reports to accompany some of PCIC’s more technical project reports. It is challenging to provide plain language summaries of the important findings without misleading readers or glossing over the subtleties of climate change impacts. However, anecdotal feedback from users indicates that the availability of summary reports dramatically increases the usability of the information provided to them. The second approach is collaborating and co-writing project reports directly with our users. This approach fosters constant learning, improved understanding and strengthens two-way communication between PCIC and regional stakeholders. The third approach is to develop short, high-level extension notes called science briefs. These cover regionally-relevant findings from the scientific community, contextualizing them and discussing what they mean for the users PCIC serves. They also serve as a way for PCIC to address frequently-asked questions in an in-depth manner. This poster discusses the methods and communication principles PCIC employs in the development of these projects and some of the lessons that have been learned along the way.

    (Delivered at the 7th Annual Northwest Climate Conference in Stevenson, Washington, November 14-16, 2016.)

  • Source Publication: Bulletin of the American Meteorological Society, doi:10.1175/BAMS-D-16-0019.1 Authors: Myhre, G., P.M. Forster, B.H. Samset, O. Hodnebrog, J. Sillmann, O. Boucher, G. Faluvegi, D. Flaschner, T. Iversen, M. Kasoar, V. Kharin, A. Kirkevag, J.-F. Lamarque, D. Olivie, T. Richardson, D. Shindell, K.P. Shine, C. Weum Stiern, T. Takemura, A. Voulg Publication Date: Oct 2016

    PDRMIP investigates the role of various drivers of climate change for mean and extreme precipitation changes, based on multiple climate model output and energy budget analyses.

    As the global temperature increases with changing climate, precipitation rates and patterns are affected through a wide range of physical mechanisms. The globally averaged intensity of extreme precipitation also changes more rapidly than the globally averaged precipitation rate. While some aspects of the regional variation in precipitation predicted by climate models appear robust, there is still a large degree of inter-model differences unaccounted for. Individual drivers of climate change initially alter the energy budget of the atmosphere leading to distinct rapid adjustments involving changes in precipitation. Differences in how these rapid adjustment processes manifest themselves within models are likely to explain a large fraction of the present model spread and needs better quantifications to improve precipitation predictions. Here, we introduce the Precipitation Driver and Response Model Intercomparison Project (PDRMIP), where a set of idealized experiments designed to understand the role of different climate forcing mechanisms were performed by a large set of climate models. PDRMIP focuses on understanding how precipitation changes relating to rapid adjustments and slower responses to climate forcings are represented across models. Initial results show that rapid adjustments account for large regional differences in hydrological sensitivity across multiple drivers. The PDRMIP results are expected to dramatically improve our understanding of the causes of the present diversity in future climate projections.

Pages