Informing BC Stakeholders

You are here

Publications Library

  • Authors: Sun, Q., F. Zwiers, X. Zhang and G. Li Publication Date: Jan 2020

    Trend scaling relationships between extreme precipitation and temperature are often used to represent the influence of long-term warming on the intensity of extreme precipitation. Indeed, such scaling relationships are often regarded as providing more reliable precipitation projections than direct projection, owing to higher confidence for temperature projections in model simulations. Due to limited data availability, especially for the sub-daily rainfall, so-called binning scaling relationships, which relate extreme precipitation to temperature at the time of occurrence and are estimated empirically either through a binning technique or quantile regression, have been considered as a substitute for trend scaling to project the long-term response of local extreme precipitation to temperature change (Lenderink and Van Meijgaard, 2008; Wasko and Sharma, 2014). Estimates of binning scaling rates are generally based on seasonal subdaily precipitation observations, and thus they are influenced by factors other than temperature that change systematically within a season, synchronously with the seasonal cycle (Zhang et al., 2017). In contrast to trend scaling, binning scaling often suggests faster than Clausius-Clapeyron intensification of sub-daily precipitation extremes with temperature.

    We explore this apparent contradiction between binning and trend scaling using a large ensemble of moderate resolution regional climate simulations for North America. The large amount of data that is available from this ensemble allows us to confidently estimate both trend and binning scaling rates for the climate that is simulated by that model. Specifically, we use a 35-member initial conditions ensemble of regional climate simulations produced with the Canadian CanRCM4 regional climate model for the period 1950-2100, with historical forcings for the period ending 2005 and RCP8.5 forcing subsequently. Each CanRCM4 ensemble member was driven by a corresponding member of a similar large ensemble of global simulations produced with the Canadian global Earth system model CanESM2 (Scinocca et al., 2016).

    We compare binning and trend scaling of precipitation extremes across different durations (1-hour, 3-hour, and 24-hour), considering annual and seasonal values, and both local and regional spatial scales. We provide strong evidence to clarify that binning scaling cannot project the long-term change in precipitation extreme, with substantial disagreement in the spatial pattern and magnitude of scaling rates between binning and trend scaling regardless of the duration, season, and spatial scale. Using the daily dew point temperature as scaling variable rather than dry air temperature does not eliminate the differences between binning and trend scaling rates. While shorter-duration extreme precipitation does appear to intensify faster with warming in CanRCM4, we only find super-adiabatic intensification of annual precipitation extremes in isolated regions regardless of accumulation durations. Compared with annual maximum results, winter extremes intensify more strongly over the western and southeastern North America across all timescales. A decreasing tendency of summer extremes is projected over the north and central Great Plains. The seasonal timing of the occurrences of precipitation extremes are expected to shift towards the cold season, reflecting the different changing tendencies in summer and winter extremes.

     

    Lenderink, G., and Van Meijgaard, E. 2008: Increase in hourly precipitation extremes beyond expectations from temperature changes. Nat. Geosci., 1, https://doi.org/10.1038/ngeo262.

    Scinocca, J. F., Kharin, V. V., Jiao, Y., Qian, M. W., Lazare, M., Solheim, L., and Flato. G. M., 2016: Coordinated Global and Regional Climate Modeling. J. Climate, 29, 17-35, https://doi.org/10.1175/Jcli-D-15-0161.1.

    Wasko, C., and Sharma, A. 2014: Quantile regression for investigating scaling of extreme precipitation with temperature. Water Resour. Res., 50, 3608-3614, https://doi.org/10.1002/2013WR015194.

    Zhang, X. B., Zwiers F. W., Li, G. L., Wan, H., Cannon, A. J., 2017: Complexity in estimating past and future extreme short-duration rainfall. Nat. Geosci., 10, 255-239, https://doi.org/10.1038/NGEO2911.

  • Source Publication: Bulletin of the American Meteorological Society, doi:10.1175/BAMS-D-18-0258.1. Authors: Sun, Q., C. Miao, A. Agha Kouchak, I. Mallakpour, D. Ji, and Q Duan Publication Date: Dec 2019

    The projected occurrence of anomalous precipitation under different ENSO conditions may be changed under future climate warming, with an asymmetric response to La Niña and El Niño and an increasing frequency of ENSO-related severe dry and wet events.

    Predicting the changes in teleconnection patterns and related hydroclimate extremes can provide vital information necessary to adapt to the effects of the El Niño Southern Oscillation (ENSO). This study uses the outputs of global climate models to assess the changes in ENSO-related dry/wet patterns and the frequency of severe dry/wet events. The results show anomalous precipitation responding asymmetrically to La Niña and El Niño, indicating the teleconnections may not simply be strengthened. A “dry to drier, wet to wetter” annual anomalous precipitation pattern was projected during La Niña phases in some regions, with drier conditions over southern North America, southern South America, and southern Central Asia, and wetter conditions in Southeast Asia and Australia. These results are robust, with agreement from the 26 models and from a subset of 8 models selected for their good performance in capturing observed patterns. However, we did not observe a similar strengthening of anomalous precipitation during future El Niño phases, for which the uncertainties in the projected influences are large. Under the RCP 4.5 emissions scenario, 45 river basins under El Niño conditions and 39 river basins under La Niña conditions were predicted to experience an increase in the frequency of severe dry events; similarly, 59 river basins under El Niño conditions and 61 river basins under La Niña conditions were predicted to have an increase in the frequency of severe wet events, suggesting a likely increase in the risk of floods. Our results highlight the implications of changes in ENSO patterns for natural hazards, disaster management, and engineering infrastructure.

  • Source Publication: Climatic Change, doi:10.1007/s10584-019-02591-7. Authors: Ben Alaya, M.A., F.W. Zwiers and X. Zhang Publication Date: Dec 2019

    In the context of climate change and projected increase in global temperature, the atmosphere’s water holding capacity is expected to increase at the Clausius-Clapeyron (C-C) rate by about 7% per 1 °C warming. Such an increase may lead to more intense extreme precipitation events and thus directly affect the probable maximum precipitation (PMP), a parameter that is often used for dam safety and civil engineering purposes. We therefore use a statistically motivated approach that quantifies uncertainty and accounts for nonstationarity, which allows us to determine the rate of change of PMP per 1 °C warming. This approach, which is based on a bivariate extreme value model of precipitable water (PW) and precipitation efficiency (PE), provides interpretation of how PW and PE may evolve in a warming climate. Nonstationarity is accounted for in this approach by including temperature as a covariate in the bivariate extreme value model. The approach is demonstrated by evaluating and comparing projected changes to 6-hourly PMP from two Canadian regional climate models (RCMs), CanRCM4 and CRCM5, over North America. The main results suggest that, on the continental scale, PMP increases in these models at a rate of approximately 4% per 1 °C warming, which is somewhat lower than the C-C rate. At the continental scale, PW extremes increase on average at the rate of 5% per 1 °C near surface warming for both RCMs. Most of the PMP increase is caused by the increase in PW extremes with only a minor contribution from changes in PE extremes. Nevertheless, substantial deviations from the average rate of change in PMP rates occur in some areas, and these are mostly caused by sensitivity of PE extremes to near surface warming in these regions.

  • Source Publication: Environmental Health, 18, 116, doi:10.1186/s12940-019-0550-y Authors: Chhetri, B.K, Galanis, E., Sobie, S., Brubacher, J., Balshaw, R., Otterstatter, M., Mak, S., Lem, M., Lysyshyn, M., Murdock, T., Fleury, M., Zickfeld, K., Zubel, M., Clarkson, L. and T.K. Takaro Publication Date: Dec 2019

    Background
    Climate change is increasing the number and intensity of extreme weather events in many parts of the world. Precipitation extremes have been linked to both outbreaks and sporadic cases of waterborne illness. We have previously shown a link between heavy rain and turbidity to population-level risk of sporadic cryptosporidiosis and giardiasis in a major Canadian urban population. The risk increased with 30 or more dry days in the 60 days preceding the week of extreme rain. The goal of this study was to investigate the change in cryptosporidiosis and giardiasis risk due to climate change, primarily change in extreme precipitation.

    Methods
    Cases of cryptosporidiosis and giardiasis were extracted from a reportable disease system (1997–2009). We used distributed lag non-linear Poisson regression models and projections of the exposure-outcome relationship to estimate future illness (2020–2099). The climate projections are derived from twelve statistically downscaled regional climate models. Relative Concentration Pathway 8.5 was used to project precipitation derived from daily gridded weather observation data (~ 6 × 10 km resolution) covering the central of three adjacent watersheds serving metropolitan Vancouver for the 2020s, 2040s, 2060s and 2080s.

    Results
    Precipitation is predicted to steadily increase in these watersheds during the wet season (Oct. -Mar.) and decrease in other parts of the year up through the 2080s. More weeks with extreme rain (>90th percentile) are expected. These weeks are predicted to increase the annual rates of cryptosporidiosis and giardiasis by approximately 16% by the 2080s corresponding to an increase of 55–136 additional cases per year depending upon the climate model used. The predicted increase in the number of waterborne illness cases are during the wet months. The range in future projections compared to historical monthly case counts typically differed by 10–20% across climate models but the direction of change was consistent for all models.

    Discussion
    If new water filtration measures had not been implemented in our study area in 2010–2015, the risk of cryptosporidiosis and giardiasis would have been expected to increase with climate change, particularly precipitation changes. In addition to the predicted increase in the frequency and intensity of extreme precipitation events, the frequency and length of wet and dry spells could also affect the risk of waterborne diseases as we observed in the historical period. These findings add to the growing evidence regarding the need to prepare water systems to manage and become resilient to climate change-related health risks.

  • Source Publication: Environment International, 128, 125-136, doi:10.1016/j.envint.2019.04.025 Authors: Sun, Q., C. Miao, M. Hanel, A.G.L. Borthwick, Q. Duan, D. Jid and H. Li Publication Date: Dec 2019

    The effects of heat stress are spatially heterogeneous owing to local variations in climate response, population density, and social conditions. Using global climate and impact models from the Inter-Sectoral Impact Model Intercomparison Project, our analysis shows that the frequency and intensity of heat events increase, especially in tropical regions (geographic perspective) and developing countries (national perspective), even with global warming held to the 1.5 °C target. An additional 0.5 °C increase to the 2 °C warming target leads to >15% of global land area becoming exposed to levels of heat stress that affect human health; almost all countries in Europe will be subject to increased fire danger, with the duration of the fire season lasting 3.3 days longer; 106 countries are projected to experience an increase in the wheat production-damage index. Globally, about 38%, 50%, 46%, 36%, and 48% of the increases in exposure to health threats, wildfire, crop heat stress for soybeans, wheat, and maize could be avoided by constraining global warming to 1.5 °C rather than 2 °C. With high emissions, these impacts will continue to intensify over time, extending to almost all countries by the end of the 21st century: >95% of countries will face exposure to health-related heat stress, with India and Brazil ranked highest for integrated heat-stress exposure. The magnitude of the changes in fire season length and wildfire frequency are projected to increase substantially over 74% global land, with particularly strong effects in the United States, Canada, Brazil, China, Australia, and Russia. Our study should help facilitate climate policies that account for international variations in the heat-related threats posed by climate change.

  • Source Publication: Journal of Hydrometeorology, 20, 10, 2069-2089, doi:10.1175/JHM-D-18-0233.1 Authors: Ben Alaya, M.A.., F. Zwiers, and X. Zhang Publication Date: Oct 2019

    Recently dam managers have begun to use data produced by regional climate models to estimate how probable maximum precipitation (PMP) might evolve in the future. Before accomplishing such a task, it is essential to assess PMP estimates derived from regional climate models (RCMs). In the current study PMP over North America estimated from two Canadian RCMs, CanRCM4 and CRCM5, is compared with estimates derived from three reanalysis products: ERA-Interim, NARR, and CFSR. An additional hybrid dataset (MSWEP-ERA) produced by combining precipitation from the Multi-Source Weighted-Ensemble Precipitation (MSWEP) dataset and precipitable water (PW) from ERA-Interim is also considered to derive PMP estimates that can serve as a reference. A recently developed approach using a statistical bivariate extreme values distribution is used to provide a probabilistic description of the PMP estimates using the moisture maximization method. Such a probabilistic description naturally allows an assessment of PMP estimates that includes quantification of their uncertainty. While PMP estimates based on the two RCMs exhibit spatial patterns similar to those of MSWEP-ERA and the three sets of reanalyses on the continental scale over North America, CanRCM4 has a tendency for overestimation while CRCM5 has a tendency for modest underestimation. Generally, CRCM5 shows good agreement with ERA-Interim, while CanRCM4 is more comparable to CFSR. Overall, the good ability of the two RCMs to reproduce the major characteristics of the different components involved in the estimation of PMP suggests that they may be useful tools for PMP estimation that could serve as a basis for flood studies at the basin scale.

  • Source Publication: Journal of Hydrometeorology, 20, 9, 1757-1778, doi:10.1175/JHM-D-18-0262.1. Authors: Shrestha, R.R., A.J. Cannon, M. Schnorbus and H. Alford Publication Date: Sep 2019

    We describe a state-of-the-art framework for projecting hydrologic impacts due to enhanced warming and amplified moisture fluxes in the subarctic environment under anthropogenic climate change. We projected future hydrologic changes based on phase 5 of the Coupled Model Intercomparison Project global climate model simulations using the Variable Infiltration Capacity hydrologic model and a multivariate bias correction/downscaling method for the Liard basin in subarctic northwestern Canada. Subsequently, the variable importance of key climatic controls on a set of hydrologic indicators was analyzed using the random forests statistical model. Results indicate that enhanced warming and wetness by the end of century would lead to pronounced declines in annual and monthly snow water equivalent (SWE) and earlier maximum SWE. Prominent changes in the streamflow regime include increased annual mean and minimum flows, earlier maximum flows, and either increased or decreased maximum flows depending on interactions between temperature, precipitation, and snow. Using the variable importance analysis, we find that precipitation exerts the primary control on maximum SWE and annual mean and maximum flows, and temperature has the main influence on timings of maximum SWE and flow, and minimum flow. Given these climatic controls, the changes in the hydrologic indicators become progressively larger under the scenarios of 1.5°, 2.0°, and 3.0°C global mean temperature increases above the preindustrial period. Hence, the framework presented in this study provides a detailed diagnosis of the hydrologic changes as well as controls and interactions of the climatic variables, which could be generalized for understanding regional scale changes in subarctic/nival basins.

  • Source Publication: npj Climate and Atmospheric Science, 2, 24, doi:10.1038/s41612-019-0079-3 Authors: Sillmann, J., C. Weum Stjern, G. Myhre, B. Samset, Ø. Hodnebrog, O. Boucher, P. Forster, A. Kirkevåg, J.F. Lamarque, D. Olivié, D. Shindell, A. Voulgarakis, F. Zwiers, T. Andrews, G. Faluvegi, M. Kasoar, T. Richardson, T. Takemura, and V. Kharin Publication Date: Jul 2019

    Global warming due to greenhouse gases and atmospheric aerosols alter precipitation rates, but the influence on extreme precipitation by aerosols relative to greenhouse gases is still not well known. Here we use the simulations from the Precipitation Driver and Response Model Intercomparison Project that enable us to compare changes in mean and extreme precipitation due to greenhouse gases with those due to black carbon and sulfate aerosols, using indicators for dry extremes as well as for moderate and very extreme precipitation. Generally, we find that the more extreme a precipitation event is, the more pronounced is its response relative to global mean surface temperature change, both for aerosol and greenhouse gas changes. Black carbon (BC) stands out with distinct behavior and large differences between individual models. Dry days become more frequent with BC-induced warming compared to greenhouse gases, but so does the intensity and frequency of extreme precipitation. An increase in sulfate aerosols cools the surface and thereby the atmosphere, and thus induces a reduction in precipitation with a stronger effect on extreme than on mean precipitation. A better understanding and representation of these processes in models will provide knowledge for developing strategies for both climate change and air pollution mitigation.

  • Authors: BC Housing, BC Hydro, the City of Vancouver, the City of New Westminster and the Province of BC Publication Date: Jun 2019

    The Design Guide Supplement on Overheating and Air Quality was published by BC Housing in collaboration with BC Hydro, the City of Vancouver, the City of New Westminster, and the Province of BC. It provides information on the key strategies and approaches necessary to reduce the impacts of a warmer climate on mid- and high-rise wood-frame and noncombustible residential buildings within British Columbia. Specifically, it is intended to provide building industry actors, including local governments, public sector organizations, architects, and developers, with an accessible source of information on the key means of addressing issues of overheating and indoor air quality.

  • Source Publication: Geophysical Research Letters, doi:10.1029/2019GL082908. Authors: Li, C., F. Zwiers, X. Zhang, G. Chen, J. Lu, G. Li, J. Norris, Y. Tan, Y. Sun and M. Liu Publication Date: Jun 2019

    Climate models project that extreme precipitation events will intensify in proportion to their intensity during the 21st century at large spatial scales. The identification of the causes of this phenomenon nevertheless remains tenuous. Using a large ensemble of North American regional climate simulations, we show that the more rapid intensification of more extreme events also appears as a robust feature at finer regional scales. The larger increases in more extreme events than in less extreme events are found to be primarily due to atmospheric circulation changes. Thermodynamically induced changes have relatively uniform effects across extreme events and regions. In contrast, circulation changes weaken moderate events over western interior regions of North America, and enhance them elsewhere. The weakening effect decreases and even reverses for more extreme events, whereas there is further intensification over other parts of North America, creating an “intense gets intenser” pattern over most of the continent.

  • Authors: Lower Mainland Facilities Management, Pinna Sustainability, The Pacific Climate Impacts Consortium Publication Date: May 2019

    Rising temperatures, shifting precipitation patterns, and extreme weather events are already affecting Vancouver Coastal Health (VCH) and our Communities of Care. Chronic stresses and acute shocks are creating a “new climate reality” for health facilities and service delivery, and reshaping our working context.

    With this series of reports, Lower Mainland Facilities Management (LMFM) demonstrates forward-thinking public sector leadership; positions health authorities to meet legislated requirements for addressing climate risk and reducing emissions; and, enables major infrastructure projects to assess climate resilience.

  • Source Publication: Journal of Climate, early online access, doi: 10.1175/JCLI-D-18- 0461.1. Authors: Seiler, C., Publication Date: Apr 2019

    Extratropical cyclones (ETCs) are known to intensify due to three vertically interacting positive potential vorticity perturbations that are associated with potential temperature anomalies close to the surface (θB), condensational heating in the lower-level atmosphere (qsat), and stratospheric intrusion in the upper-level atmosphere (qtr). This study presents the first climatological assessment of how much each of these three mechanisms contributes to the intensity of extreme ETCs. Using relative vorticity at 850 hPa as a measure of ETC intensity, results show that in about half of all cases the largest contributions during maximum ETC intensity are associated with qsat (53% of all ETCs), followed by qtr (36%) and θB (11%). The relative frequency of storms that are dominated by qsat is higher 1) during warmer months (61% of all ETCs during warmer months) compared to colder months (50%) and 2) in the Pacific (56% of all ETCs in the Pacific) compared to the Atlantic (46%). The relative frequency of ETCs that are dominated by θB is larger 1) during colder months (13%) compared to warmer months (3%), 2) in the Atlantic (15%) compared to the Pacific (8%), and 3) in western (11%–20%) compared to eastern ocean basins (4%–9%). These findings are based on piecewise potential vorticity inversion conducted for intense ETCs that occurred from 1980 to 2016 in the Northern Hemisphere (3273 events; top 7%). The results may serve as a baseline for evaluating ETC biases and uncertainties in global climate models.

  • Source Publication: Journal of Advances in Modeling Earth Systems, 11, 5, doi:10.1029/2018MS001532. Authors: He. Y., N. McFarlane and A. H. Monahan Publication Date: Mar 2019

    This paper presents a new mathematical formulation to account for the effects turbulent motions in comprehensive global climate models. The new formulation is based on recently published theoretical advances and results of high‐resolution numerical model simulations for specialized atmospheric turbulence regimes. The new formulation is tested and evaluated using a simplified model configuration designed to represent a single grid volume of a global climate model.

  • Source Publication: Hydrology and Earth System Sciences, 23, 811-828, doi:10.5194/hess-23-811-2019. Authors: Islam, S. Ul, C.L. Curry, S.J. Dery and F.W. Zwiers Publication Date: Feb 2019

    In response to ongoing and future-projected global warming, mid-latitude, nival river basins are expected to transition from a snowmelt-dominated flow regime to a nival–pluvial one with an earlier spring freshet of reduced magnitude. There is, however, a rich variation in responses that depends on factors such as the topographic complexity of the basin and the strength of maritime influences. We illustrate the potential effects of a strong maritime influence by studying future changes in cold season flow variability in the Fraser River Basin (FRB) of British Columbia, a large extratropical watershed extending from the Rocky Mountains to the Pacific Coast. We use a process-based hydrological model driven by an ensemble of 21 statistically downscaled simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5), following the Representative Concentration Pathway 8.5 (RCP 8.5).

    Warming under RCP 8.5 leads to reduced winter snowfall, shortening the average snow accumulation season by about one-third. Despite this, large increases in cold season rainfall lead to unprecedented cold season peak flows and increased overall runoff variability in the VIC simulations. Increased cold season rainfall is shown to be the dominant climatic driver in the Coast Mountains, contributing 60 % to mean cold season runoff changes in the 2080s. Cold season runoff at the outlet of the basin increases by 70 % by the 2080s, and its interannual variability more than doubles when compared to the 1990s, suggesting substantial challenges for operational flow forecasting in the region. Furthermore, almost half of the basin (45 %) transitions from a snow-dominated runoff regime in the 1990s to a primarily rain-dominated regime in the 2080s, according to a snowmelt pulse detection algorithm. While these projections are consistent with the anticipated transition from a nival to a nival–pluvial hydrologic regime, the marked increase in FRB cold season runoff is likely linked to more frequent landfalling atmospheric rivers in the region projected in the CMIP5 models, providing insights for other maritime-influenced extratropical basins.

  • Source Publication: Nature Scientific Data, 6, 180299, doi:10.1038/sdata.2018.299. Authors: Werner, A.T., R.R. Shrestha, A.J. Cannon, M.S. Schnorbus, F.W. Zwiers, G. Dayon and F. Anslow Publication Date: Jan 2019

    We describe a spatially contiguous, temporally consistent high-resolution gridded daily meteorological dataset for northwestern North America. This >4 million km2 region has high topographic relief, seasonal snowpack, permafrost and glaciers, crosses multiple jurisdictional boundaries and contains the entire Yukon, Mackenzie, Saskatchewan, Fraser and Columbia drainages. We interpolate daily station data to 1/16° spatial resolution using a high-resolution monthly 1971–2000 climatology as a predictor in a thin-plate spline interpolating algorithm. Only temporally consistent climate stations with at least 40 years of record are included. Our approach is designed to produce a dataset well suited for driving hydrological models and training statistical downscaling schemes. We compare our results to two commonly used datasets and show improved performance for climate means, extremes and variability. When used to drive a hydrologic model, our dataset also outperforms these datasets for runoff ratios and streamflow trends in several, high elevation, sub-basins of the Fraser River.

  • Source Publication: Geophysical Research Letters, 46, 1651-1661, doi:10.1029/2018GL080720. Authors: Curry, C.L., S.U. Islam, F.W. Zwiers and S.J. Dery Publication Date: Jan 2019

    Snow‐dominated watersheds are bellwethers of climate change. Hydroclimate projections in such basins often find reductions in annual peak runoff due to decreased snowpack under global warming. British Columbia's Fraser River Basin (FRB) is a large, nival basin with exposure to moisture‐laden atmospheric rivers originating in the Pacific Ocean. Landfalling atmospheric rivers over the region in winter are projected to increase in both strength and frequency in Coupled Model Intercomparison Project Phase 5 climate models. We investigate future changes in hydrology and annual peak daily streamflow in the FRB using a hydrologic model driven by a bias‐corrected Coupled Model Intercomparison Project Phase 5 ensemble. Under Representative Concentration Pathway (8.5), the FRB evolves toward a nival‐pluvial regime featuring an increasing association of extreme rainfall with annual peak daily flow, a doubling in cold season peak discharge, and a decrease in the return period of the largest historical flow, from a 1‐in‐200‐year to 1‐in‐50‐year event by the late 21st century.

  • Source Publication: Earth's Future, doi:10.1029/2018EF001001. Authors: Li, C., F.W. Zwiers, X. Zhang and G. Li Publication Date: Jan 2019

    Global warming is expected to increase the amount of atmospheric moisture, resulting in heavier extreme precipitation. Various studies have used the historical relationship between extreme precipitation and temperature (temperature scaling) to provide guidance about precipitation extremes in a future warmer climate. Here we assess how much information is required to robustly identify temperature scaling relationships, and whether these relationships are equally effective at different times in the future in estimating precipitation extremes everywhere across North America. Using a large ensemble of 35 North American regional climate simulations of the period 1951–2100, we show that individual climate simulations of length comparable to that of typical instrumental records are unable to constrain temperature scaling relationships well enough to reliably estimate future extremes of local precipitation accumulation for hourly to daily durations in the model's climate. Hence, temperature scaling relationships estimated from the limited historical observations are unlikely to be able to provide reliable guidance for future adaptation planning at local spatial scales. In contrast, well‐constrained temperature scaling relations based on multiple regional climate simulations do provide a feasible basis for accurately projecting precipitation extremes of hourly to daily durations in different future periods over more than 90% of the North American land area.

  • Source Publication: Hydrological Processes, doi: 10.1002/hyp.13321. Authors: Tsuruta, K., M.A. Hassan, S.D. Donner and Y. Alila, Publication Date: Jan 2019

    Future sediment dynamics may be affected by changing climates or hydrological regimes because of the close link between hydrology and sediment erosion, deposition, and transport. Previously, investigations of these potential changes have been constrained by a combination of limited observational data, hydrological drivers, and appropriate mechanistic models. Additionally, there is often ambiguity regarding how to disentangle the impacts of climate and hydrology from direct human factors such as reservoirs and land‐use change, which often exert more control over sediment dynamics. In this study, we utilize a recently developed, large‐scale, distributed, mechanistic sediment transport model to project future sediment erosion, deposition, and transportation within the Fraser River Basin in British Columbia, Canada—a basin with historical water flux and sediment load observations and limited anthropogenic influences upstream of its delta. The sediment model is driven by synthetic land‐surface hydrology derived from Scenarios A1B, A2, and B1 of the Special Report on Emissions Scenarios, which were provided by the Pacific Climate Impacts Consortium. Resulting simulations of water flux and sediment load from 1965 to 1994 are first validated against observational data then compared with future projections. Future projections show an overall increase in annual hillslope erosion and in‐channel transportation, a shift towards earlier spring peak erosion and transportation, and longer persistence of the sediment signal through the year. These shifts in timing and annual yield may have deleterious effects on spawning sockeye salmon and are insufficient to counteract future coastal retreat caused by sea‐level rise.

  • Source Publication: Earth's Future, doi:10.1029/2018EF001050. Authors: M.C. Kirchmeier‐Young N.P. Gillett F.W. Zwiers A.J. Cannon F.S. Anslow Publication Date: Dec 2018

    A record 1.2 million ha burned in British Columbia, Canada's extreme wildfire season of 2017. Key factors in this unprecedented event were the extreme warm and dry conditions that prevailed at the time, which are also reflected in extreme fire weather and behavior metrics. Using an event attribution method and a large ensemble of regional climate model simulations, we show that the risk factors affecting the event, and the area burned itself, were made substantially greater by anthropogenic climate change. We show over 95% of the probability for the observed maximum temperature anomalies is due to anthropogenic factors, that the event's high fire weather/behavior metrics were made 2–4 times more likely, and that anthropogenic climate change increased the area burned by a factor of 7–11. This profound influence of climate change on forest fire extremes in British Columbia, which is likely reflected in other regions and expected to intensify in the future, will require increasing attention in forest management, public health, and infrastructure.

  • Source Publication: Journal of Climate, 31, 19, 7771-7787, doi:10.1175/JCLI-D-17-0552.1 Authors: Mueller, B.L., N.P. Gillett, A. Monahan and F.W. Zwiers Publication Date: Sep 2018

    The paper presents results from a climate change detection and attribution study on the decline of Arctic sea ice extent in September for the 1953–2012 period. For this period three independently derived observational datasets and simulations from multiple climate models are available to attribute observed changes in the sea ice extent to known climate forcings. Here we direct our attention to the combined cooling effect from other anthropogenic forcing agents (mainly aerosols), which has potentially masked a fraction of greenhouse gas–induced Arctic sea ice decline. The presented detection and attribution framework consists of a regression model, namely, regularized optimal fingerprinting, where observations are regressed onto model-simulated climate response patterns (i.e., fingerprints). We show that fingerprints from greenhouse gas, natural, and other anthropogenic forcings are detected in the three observed records of Arctic sea ice extent. Beyond that, our findings indicate that for the 1953–2012 period roughly 23% of the greenhouse gas–induced negative sea ice trend has been offset by a weak positive sea ice trend attributable to other anthropogenic forcing. We show that our detection and attribution results remain robust in the presence of emerging nonstationary internal climate variability acting upon sea ice using a perfect model experiment and data from two large ensembles of climate simulations.

Pages