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1. Climate feedbacks are processes that can amplify or reduce the effect of an initial climate forcing. For example, increasing atmospheric green-
house gas concentrations lead to warmer surface temperatures that hasten snow and sea ice melt, exposing more open water and ground 
to solar radiation. This leads to further warming that causes more ice and snow melt, and so on, constituting an amplification of the initial 
warming. This is known as the positive “ice-albedo feedback.”  Negative feedbacks also operate in the Earth system. For example, as the planet 
warms in response to greenhouse gas forcing, it radiates more longwave radiation back out into space (known as the “Planck feedback”). This 
cools the Earth, reducing somewhat the initial warming. It is the sum of feedbacks such as these that determines climate sensitivity. For more 
information on feedback processes, see Sherwood et al. (2020).

2. The Earth’s climate sensitivity can be determined in several ways. Equilibrium climate sensitivity is the increase in global surface temperature 
that would eventually occur if the atmospheric concentration of carbon dioxide were doubled relative to the preindustrial period, and then 
held constant at that level indefinitely. However, determining equilibrium climate sensitivity requires running models for thousands of model 
years, which is computationally expensive. As a more practical alternative, effective climate sensitivity is often estimated instead. In this ap-
proach, the concentration of carbon dioxide in the modelled atmosphere is abruptly quadrupuled and the temperature change recorded 
after 150 simulated years. For the remainder of this Science Brief, we will follow Kuma and coauthors by referring to the metric they use, effec-
tive climate sensitivity, as simply “climate sensitivity.” 

Some of the global climate models used to study 
the Earth's climate system and make climate pro-
jections share components and computer code, 
much as if they were members of the same “fami-
lies.”  This raises the question: to what extent do 
these family resemblances affect model results? 
Publishing in the Journal of Advances in Modeling 
Earth Systems, Kuma, Bender and Jönsson exam-
ined and quantified how this interdependence 
between models affects their simulated climate 
sensitivities, feedbacks and resulting projections 
of surface air temperature. Specifically, the au-
thors found that models with shared code tend 
to have greater similarity in their climate sensi-
tivities, strengths of feedbacks, and therefore in 
their projected surface temperatures. The authors 
also demonstrated that weighting ensembles of 
models according to their family resemblance re-
sulted in a lower equilibrium climate sensitivity 
than when using a simple ensemble mean, and 
also reduced differences in climate sensitivity be-
tween the two most recent generations of climate 
models. 

Introduction 
Projections from ensembles of global climate models 
(GCMs) are used to understand how the Earth's climate 
may change in the future. These projections serve as the 

foundation for multiple sources of climate information, 
such as the downscaled climate scenarios and hydrologic 
projections developed at PCIC. 
To inform the use and interpretation of these ensemble 
projections, it is useful to have a sense of how indepen-
dent each of the models are from each other. How much 
do they have in common in terms of their description of 
climate system components and the resulting computer 
code, and how do these commonalities affect model re-
sults? In particular, how does this affect the strength of 
their simulated feedbacks1 and their estimates of climate 
sensitivity2? It is these properties that will determine the 
severity of the climate impacts that will be experienced in 
various regions around the globe.
Kuma, Bender and Jönsson examined these questions 
through the lens of climate model ancestry in their article 
in the Journal of Advances in Modeling Earth Systems, the 
topic of this Science Brief. Answers to these questions can 
help characterize the uncertainty in model projections, 
helping us more wisely use the information they provide.

Shared Model Code
Certain sets of models share components, and thus por-
tions of their underlying computer code. For instance, 
multiple models might share the same ocean or atmo-
sphere components, or subcomponents, such as the code 
that describes chemical reactions within the atmosphere. 
These code components can either be shared between 
modelling groups directly, or duplicated by one group 
based on the published results of another. Tracing the use 
of shared code permits the grouping of models by fami-
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lies and ancestry in a way that is analogous to 
how genealogy allows us to group people by 
family trees.
We can think of climate models as being, as 
the authors put it, "samples corresponding 
to representations of physical reality in a hy-
pothesis space." That is, each model's struc-
ture is one representation of the climate 
system. In this way, we can think of models 
as being samples from a greater space of hy-
potheses. Ideally, models would be indepen-
dent samples of this hypothesis space (Figure 
1a). But in practice, due to their shared code 
and structure, they tend to cluster (Figure 1b), 
meaning that they do not sample uniformly 
across the hypothesis space.
The authors analysed the extent of this clus-
tering, and considered how it affects the 
strength of simulated climate system feed-
backs and estimates of climate sensitivity.

The Effect of Genealogy on Model Results 
Kuma et al. examined 167 GCMs from 38 dif-
ferent modelling centres worldwide. The au-
thors grouped the models into 14 families 
by shared model ancestry3 (Figure 2), mean-
ing that if two recent models B and C shared 
components with an older ancestor model 
A, then they would all be considered as belonging to the 
same family. The authors first found that the three largest 
model families account for about 70% of the multimodel 
ensemble from the sixth phase of the Coupled Model In-
tercomparison Project 6 (CMIP6), but only 52% of the ear-
lier CMIP5 ensemble.4 It is worth noting that the authors 
use two different but closely-related weighting schemes 
that they call "ancestry" and "family," but these tended to 
produce very similar results.5  
Beginning with the topic of feedback processes in the mod-
els, the authors compared various weighting schemes, in-
cluding weighting by family and ancestry, against a simple 
mean in which every model run is given equal weight (Fig-
ure 3). They found that the ancestry and family weightings 

gave very similar results and displayed the largest differ-
ences from the simple multi-model means for cloud feed-
backs. The former weightings reduced the net (shortwave 
plus longwave) cloud feedbacks overall for CMIP6 models 
(Figure 3, Panel a), resulting in a lower climate sensitivity 
(by about 0.25°C) using these weightings. The correspond-
ing difference in climate sensitivity using these weightings 
for CMIP5 models is negligible (Figure 3, Panel b). Weight-
ing by model ancestry also reduces the differences in 
estimates of cloud feedbacks and climate sensitivity be-
tween CMIP6 and CMIP5 models (Figure 3, Panel c). The 
authors concluded that at least some of the differences in 
these metrics between the two CMIP phases is due to an 
overrepresentation of models from the largest families in 
CMIP6, primarily the Hadley Centre and NCAR Community 
Climate Model (CCM) groups. Furthermore, Kuma and co-

3. An exception was made for two very large model families that split in the 1980s, based on the open-source Community Climate Model [CCM] 
and based on the models from the European Centre for Medium-range Weather Forecasts, [ECMWF]. Despite sharing common ancestry, the 
authors treat them as two different families.

4. For more on the fifth phase of the Coupled Model Intercomparison Project, see Taylor et al. (2012) or here: http://cmip-pcmdi.llnl.gov/cmip5/. 
For more on the sixth phase of the Coupled Model Intercomparison Project, see Eyring et al. (2016) or here: https://pcmdi.llnl.gov/CMIP6/. 

5. In the authors' weighting by ancestry, the oldest models were given the same weight, which was then subdivided between descendant 
models. So, if model A split into models B and C, but model C further split into models D and E, then the latter two models would each have a 
lower weight than model B. This differs from family weighting, where the weights are assigned equally to all members of the family. So, in the 
example above, models A, B, C, D and E would each have the same weight.

Figure 1: Conceptual examples illustrating how models sample from a 
hypothesis space (from Kuma et al., 2023).  
In each figure panel, the shading indicates a probability density function (PDF) 
that quantifies our collective belief (based on our current best understand-
ing) that a certain representation of the climate system is true, with darker and 
lighter shading representing greater and lesser belief in that representation, re-
spectively. The red dot indicates the unknown true physical representation that 
need not coincide with the centre of the PDF. Model representations are given 
by the coloured shapes, as indicated. Panel (a) shows an ideal case, in which 
models sample from the hypothesis space in a relatively uniform or unbiased 
manner. Panel (b) shows the more realistic case, in which the models cluster 
because of shared components. Note also that this hypothesis space would ac-
tually have far more than two dimensions. 
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authors found that: 1) the higher mean climate sensitivity 
in the CMIP6 ensemble compared to CMIP5 can be attrib-
uted mainly to all 6 models from the Hadley family and a 
comparable number of models from the CCM family, and 
2) this higher climate sensitivity is reduced under ancestry 
weighting by the smaller per-model weight assigned to 
models in large families. 
With these results in hand, Kuma and colleagues analysed 
the model families to determine how interdependent they 
are. That is, do models from the same family tend to show 

similar values for feedbacks and climate sensitivity? And, if 
so, is this true for all model families or just some of them?
Kuma et al. found that while models from some large fam-
ilies tended to have similar values for certain feedbacks, 
others exhibited a wider spread of values.6 In CMIP6, the 
six models descended from the Hadley Centre Atmo-
sphere-only global Model (HadAM) tended to have very 
similar values for feedbacks, with total cloud and cloud 
shortwave feedbacks being larger than the mean from the 
ensemble, and longwave cloud feedbacks being smaller. 

6. This feature arises from the fact that even when the GCMs in a family share the same component, e.g. an ocean model, the parameters deter-
mining the behaviour of the component are specific to each model. In other words, the parameters for these schemes have to be “tuned” in 
order to achieve optimal interactions with other components of the climate model, and this tuning can affect model behaviour substantially. 
Thus even models with the same components can have different characteristics.

Figure 2: Model Code Genealogies (from Kuma et al., 2023).  
This figure shows the model genealogies for CMIP models. Different model types—atmosphere general circulation models (AGC-
Ms), atmosphere-ocean GCMs (AOGCMs) and Earth-system models (ESMs)—are distinguished by colours as in the legend at the 
top. Inheritance between different models is indicated by solid vertical arrows, inheritance by generation is indicated by solid 
horizontal arrows and inheritance between model types is indicated by dotted arrows. Grey shading indicates shared institutes or 
countries of development and numbers in circles indicate the phase of CMIP (i.e., 3, 5 or 6). 
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The HadAM family, along with the IPSL 
family of models, also had an above-
average climate sensitivity. By contrast, 
the UCLA family of five GCMs exhibited 
the opposite behaviour for all of the 
mentioned feedbacks, and had a below-
average climate sensitivity.
The two largest model families in CMIP6, 
ECMWF (14 GCMs) and CCM (17 GCMs) 
showed a large and relatively even 
spread of climate sensitivity around the 
simple multi-model mean value. This is 
despite the fact that they exhibit rough-
ly opposite behaviour in terms of their 
shortwave, longwave and total cloud 
feedbacks. Kuma et al. point out that in 
this case, ancestry or family weighting is 
unlikely to significantly affect either the 
mean or spread of climate sensitivity in 
the overall CMIP6 ensemble.
The authors' results suggest that differ-
ent families of models cluster together 
to differing degrees in terms of the 
strength of their simulated feedbacks 
and their climate sensitivities. Some 
families show strong interdependence 
while others have a relatively wide 
spread, especially for CMIP6. This raises 
the question of whether this translates 
into similar behaviour for their simulated 
climate variables. For example, if models 
cluster together in terms of climate sen-
sitivity, then do they also display similar 
temperatures for a given concentration 
of greenhouse gases in the atmosphere?
With this question in mind, Kuma and 
coauthors concluded their study with 
an examination of model-simulated, 
global mean surface air temperature by 
CMIP6 GCMs under four different emis-
sions scenarios. In the first experiment, 
the models were driven using histori-
cal greenhouse gas emissions from the 
years 1860 to 2000. In the second, his-
torical emissions were specified up to the year 2015 and 
those from the moderate SSP2-4.5 emissions scenario up 
to the year 2100. In the third, the atmospheric concentra-
tion of carbon dioxide was abruptly quadrupled from pre-
industrial levels (taken to be those from the year 1850) and 

held steady for 150  years. In the final experiment, carbon 
dioxide levels were raised more gradually, again from the 
preindustrial level, by 1% per year for 150 years.
The two largest model families, CCM and ECMWF, which 
had large spreads in climate sensitivity, also exhibited 

Figure 3: Feedbacks and effective climate sensitivities in CMIP6 and CMIP5 
models under different weighting schemes (from Kuma et al., 2023).  
Panels a) and b) show differences in feedback strength (left panels) and effective 
climate sensitivity (ECS; right panels) for various types of weighting (as indicated 
by the colour and texture style in the legend) compared to a simple mean, for the 
CMIP6 (a) and CMIP5 (b) model ensembles. Note that shortwave cloud feedback, net 
feedback and ECS are all smaller in CMIP6 if model ancestry or family weighting is 
applied. Note also that these two forms of weighting give very similar results. Panel 
c) shows differences in feedback strength and ECS between CMIP6 and CMIP5 using 
a simple mean (in black) and weighted by ancestry (in grey). Note that the difference 
in ECS between CMIP6 and CMIP5 is reduced under model ancestry weighting. 
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a large spread in surface air temperature change (from 
the preindustrial value). Their family-mean temperature 
change also fell near the middle of the range for all CMIP6 
models, consistent with the climate sensitivity results. Also 
consistent  with these previous results were the tempera-
ture changes in the UCLA (lower than the CMIP6 average) 
and HadAM (above-average for CMIP6) families. Finally, 
model families with only a few members tended to exhibit 
very similar temperature change over the simulated pe-
riod in all experiments.

Summary and Outlook
Anticipating  the issue of model independence that forms 
the focus of Kuma and coauthors’ work, and drawing on 
prior work by Brunner et al. (2020), PCIC researchers re-
cently employed an initial screening process to generate 
model subsets for downscaled CMIP6 scenarios over Can-
ada and its subregions.7 PCIC's initial subset of 16 models 
based on model ancestry covers 10 of the 14 main families 
identified by Kuma and colleagues, with the largest frac-
tion of models coming from the CCM (about one-third of 
the Earth system models) and ECMWF (about one-fifth of 
the Earth system models), together accounting for half 
of the models in PCIC’s initial subset. These were the two 
families described by Kuma et al. as having the largest 
spread in climate sensitivity and surface air temperature, 
as well as “middle-of-the-range” mean temperatures.
The work of Kuma, Bender and Jönsson, which examines 
how commonalities between climate models affect their 
simulated climate feedbacks, climate sensitivity and pro-
jections of surface air temperature, is an important con-
tribution to applied climate research. There is an urgent 
need to provide the users of climate model information 
with a means of reducing the large range of possible 
outcomes described in projections from the CMIP5 and 
CMIP6 ensembles, as this can slow or hinder decision-
making. Kuma et al. found that weighting CMIP6 climate 
models according to model ancestry resulted in a reduc-
tion in overall cloud feedbacks and a lower climate sen-
sitivity than a simple ensemble mean. It also reduced the 
difference in estimates of climate sensitivity between the 
most recent generation of models participating in CMIP6 
and the previous generation of models from CMIP5. This is 
important because many existing regional climate assess-
ments are based on the previous intercomparison: hence, 
closer agreement between results from the two ensembles 
maintains the relevance of those assessments. Since cli-

mate sensitivity, in particular, is an important determinant 
of the magnitude of climate impacts, better constraining 
its range via the consideration of model interdependence 
is an important step forward.
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7. For more information on the models used, see the Statistically Downscaled Climate Scenarios page on our Data Portal: http://pacificclimate.
org/data/statistically-downscaled-climate-scenarios.


