Evaluating the role of increasing spatial resolution in climate projections for highway impacts assessments in British Columbia

Introduction

Recent extreme precipitation events have resulted in flooding and damage to several highways in British Columbia. Rebuilding and redesigning these roadways requires detailed information about future precipitation extremes to plan effectively for a changing climate in the Pacific Northwest. Statistical downscaling [Wilby, 2004] offers methods to obtain the high resolution projections needed for vulnerability assessments, however downscaling

can affect the size of future projections. Our goal is to measure this effect and determine if it influences the results of a highway risk assessment.

Figure 1. Map of B.C. highlighting past and present locations of highway vulnerability assessments.

Experimental Design

We compare three precipitation indices computed from regional climate models (RCMs) [Mearns, 2009] at different spatial resolutions to test whether downscaling is altering the size of precipitation projections and to see if any differences would change the results of the risk assessment.

Table 1. Indices of precipitation extremes compared at RCM and 10 km resolution.

ID Indicator name		Definitions	UNITS
PRCPTOT	Annual total wet-day precipitation	Annual total PRCP in wet days (RR>=1mm)	mm
R95p	Very wet days	Annual total PRCP when RR>95th percentile	mm
RP10 10-Year Return Period		Daily precipitation amount that is expected to occur once every 10 years	mm

Downscaling - Bias Correction/Constructed Analogues with Quantile Mapping (BCCAQ) [Cannon, 2014] •Produces precipitation simulations through historical analogues and quantile mapping calibrated with ANUSPLIN observations [McKenney, 2011].

Aggregation and Comparison Precipitation indices are computed from both RCMs and from downscaled precipitation aggregated to RCM resolution. Aggregation is performed multiple ways to test

Com

> 36

50 40

> 30 20

10

S.R. Sobie, A.J. Cannon, T.Q. Murdock Pacific Climate Impacts Consortium (PCIC), Victoria, BC

PIEVC Risk Assessment

The PIEVC process [Lapp, 2013] combines engineering expertise with projections of climate change to determine levels of risk for individual pieces of infrastructure. Each piece of infrastructure (e.g. bridge or road) is assigned a risk value based on the probability of a particular climate event occurring and on the severity of damage to the infrastructure should that event occur. This enables engineers, managers and designers to identify where vulnerabilities are highest.

Risk = **P**robability x Severity

Probability and Severity are both rated on a scale from 0 to 7.

Components	Score	Result
Drobability	0	Climate event will not cause an adverse effect
Probability	7	Very certain of an adverse effect
Soucrity	0	No negative consequences if event occurs
Seventy	7	Significant failure if event occurs

The resulting risk score identifies infrastructure with low, medium and high risk values to specific climate events.

Range	Threshold	Response
	Low Risk	No immediate action needed
36	Medium Risk	Action and analysis may be needed
	High Risk	Immediate action required

Figure 4. Maps of 10-

year precipitation return periods at 10 km and 50 km resolution. The top map (A) shows return periods from ANUSPLIN during 1951-2000. The lower two images display the differences between RCM and ANUSPLIN 10-year return periods for British Columbia. Return calculated are periods the NARCCAP rom ensemble of 11 regional climate models (B) and from the same RCMs downscaled and then aggregated back to RCM resolution (C). The added information included as part of the downscaling process from observations improves the simulation of return periods over British Columbia. This also occurs for the total and wet day precipitation indices as well.

Figure 3. Risk scores for the three highway regions obtained by following the PIEVC risk assessment process. Pine Pass possesses the greater 'high risk' elements due to the age of the highway and its vulnerability to flooding. The inset photo illustrates an occurrence of a 'high risk' event at Bella Coola.

Literature cited

Cannon, A. J. et al., (2014), Downscaling Extremes – an inter-comparison of multiple gridded methods. Lapp, D. (2013), Infrastructure Climate Risk Assessment Backgrounder, PIEVC, Engineers Canada. Mearns, L.O. et al. (2009), A regional climate change assessment program for North America. EOS, 90(36), 311-312. McKenney, D.W. et al. (2011). Customized Spatial Climate Models for North America. Bull. Am. Meteo. Soc., 92, 1611-1622. Nodelman, J. (2013), Climate Engineering Vulnerability Assessment of Three Britsh Columbia Highway Segments. Nodelcorp Consulting Report. Wilby R.L. et al., (2004) Guidelines for use of climate scenarios developed from statistical downscaling methods, Supporting material from the IPCC.

- The key findings are:

Validation & Results

1) Downscaling with bias correction and quantile mapping improves spatial and temporal representation of average and extreme precipitation events in B.C.

2) The order of aggregation to RCM scale does not make a statistically significant difference for the vast majority of models and amounts to between 0 % and 4 % on average. 3) Downscaling does not alter projected changes in average and moderate precipitation events but does change the size of projected extreme events from some models. 4) The differences in RCM and downscaled projections of

return periods are large enough in some cases to change the probability scores for extreme precipitation. This can increase the risk ratings in the highway vulnerability assessment for specific pieces of infrastructure.

-120

-125

Longitude (°E)

projected change in 10year precipitation return between the period downscaled RCMs at 50 the driving Downscaling **RCMs** inflate the tends to change in return periods. comparison of Anomaly Changes

Figure 5. The difference

in percent

between

Figure 6. Boxplots illustrating the range of projected change from the ensemble of 11 regional climate models at each grid cell within B.C. for the three precipitation indices. Blue boxplots denote the RCM projections, red plots show the downscaled projections and black plots show the difference.

-	Table 2. A subset of risk scores for Bella Coola highway from the assessment.							
	Infrastructure	Annual	Extreme	Sustaine d	~	Rain on	Peak	
	Components	Rainfall	Rainfall	Rainfall	Snow	Snow	Streamflow	
	Shoulders		24	7	3		24	
	Ditches		12	7	3	15	18	
	Embankments	8	18	7		5	36	
	Slope Stability	10	24	7		5	36	
	Armoring	6	30	7		20	42	
6	Culverts <3m		24	7		15	36	
	Culverts >3m		30	7		15	18	
	Bridge End Fill		36			25	42	

Conclusions

For terrestrial British Columbia, precipitation averages and extremes can be simulated more accurately within individual regions by using gridded downscaling to increase the resolution of regional climate models. In locations where the difference between observations and RCMs is large, bias correction tends to inflate the magnitude of projected extremes. Differences in projections between the RCMs and downscaled simulations can be large enough to affect the PIEVC Risk Assessment process, leading to higher risk values. Future work will focus on correcting the inflation of extremes in the downscaling method and extending the analysis to additional regions.

Acknowledgments

This study was made possible through generous funding from the BC Ministries of Transportation and Infrastructure. The PIEVC Risk Assessment was compiled by Nodelcorp Consulting Inc.

