A climatology of mechanisms that generate intense extratropical cyclones

Christian Seiler Pacific Climate Impacts Consortium, University of Victoria

Pacific Climate Seminar Series, Jan 31, 2018

Global Climate Model (GCM) biases

IPCC Fifth Assessment Report

Biases: "models still [...] underestimate cyclone intensity." (p. 743)
Projections: "Substantial uncertainty and thus *low confidence* remains in projecting changes in NH winter storm tracks" (p. 1074)

Identifying sources of biases and uncertainties in GCMs

- Statistical approach (e.g. Zappa et al. (2013); Seiler and Zwiers (2016a,b))
- Dynamical approach (e.g. Butler et al., 2010)
- Statistical + dynamical approach (e.g. Woollings et al., 2012)
- We propose: piecewise potential vorticity inversion (Davis and Emanuel, 1991)

Cyclogenesis from the potential vorticity (PV) perspective

PV = absolute vorticity × static stability (i.e. $q = \frac{1}{\rho} \boldsymbol{\eta} \cdot \nabla \theta$)

Piecewise potential vorticity inversion

Full potential vorticity inversion

- Compute q from T, u, and v
- Compute Φ and Ψ along boundaries of domain
- Decompose q, Φ , and Ψ into a 5 day time mean and a perturbation part (e.g. $q = \bar{q} + q'$)
- Specify a balance condition that relates Φ and Ψ in 2 PDEs:
 - $\Phi = f(\Psi)$ • $q = f(\Psi, \Phi)$
- Full inversion of q: solve Φ = f(Ψ) and q = f(Ψ,Φ) simultaneously for values of Φ and Ψ for a given q

Piecewise potential vorticity inversion

• Partition q' into N parts
$$\left(\sum_{n=1}^{N} q_n = q'\right)$$

- Invert each individual q_n for Φ_n and Ψ_n
- The sum of all balanced perturbations equals the total balanced perturbation $\begin{pmatrix} N \\ \sum \\ n=1 \end{pmatrix} \Psi_n = \Psi' \end{pmatrix}$
- Convert stream function to relative vorticity $\zeta_n = \nabla^2 \Psi_n$

Data

- ERA-Interim reanalysis (1980-2016)
- Cyclone tracking using TRACK (Hodges, 1994)
- PPVI (Davis and Emanuel, 1991): 3273 ETCs, 4 time steps (36h, 24h, 12h, 00h)

Identifying intense extratropical cyclones (ETCs)

Surface temperature, lower-level PV, and upper-level PV

Potential vorticity (36 h)

Potential vorticity (36 h)

Potential vorticity (24 h)

Potential vorticity (12 h)

Potential vorticity (00 h)

Does the sum of all contributions match the balanced flow?

Pacific Climate Seminar Series, Jan 31, 2018

How do contributions vary during ETC intensification?

How do contributions vary across ocean basins?

How do contributions vary across ocean basins?

How do potential vorticity anomalies vary across ocean basins?

Pacific Climate Seminar Series, Jan 31, 2018

Conclusions

• Contribution to ETC intensification

- Lower level: 52% (latent heating)
- Upper level: 26% (stratospheric intrusion)
- Surface: 22% (warm temperature anomalies)
- Lower-level contributions dominate most cases (74% of ETCs)

• Regional analysis

- Surface contributions *decrease* from West to East (western boundary currents)
- Upper-level contributions *increase* from West to East (Rossby wave breaking)
- Research outlook 2018/19
 - How well do GCMs reproduce these mechanisms?
 - How will mechanisms respond to increasing CO₂ concentrations?

Thank you!

- Butler, A. H., D. W. Thompson, and R. Heikes, 2010: The steady-state atmospheric circulation response to climate change-like thermal forcings in a simple general circulation model. *Journal of Climate*, 23 (13), 3474–3496.
- Davis, C. A., and K. A. Emanuel, 1991: Potential vorticity diagnostics of cyclogenesis. Monthly weather review, 119 (8), 1929–1953.
- Hodges, K., 1994: A general method for tracking analysis and its application to meteorological data. Monthly Weather Review, 122 (11), 2573–2586.
- Holton, J. R., and G. J. Hakim, 2013: An introduction to dynamic meteorology. Academic press.
- Seiler, C., and F. Zwiers, 2016a: How well do CMIP5 climate models reproduce explosive cyclones in the extratropics of the Northern Hemisphere? *Climate Dynamics*, **46** (**3-4**), 1241–1256.
- Seiler, C., and F. Zwiers, 2016b: How will climate change affect explosive cyclones in the extratropics of the Northern Hemisphere? *Climate Dynamics*, **46** (11), 3633–3644.
- Woollings, T., J. M. Gregory, J. G. Pinto, M. Reyers, and D. J. Brayshaw, 2012: Response of the North Atlantic storm track to climate change shaped by ocean-atmosphere coupling. *Nature Geoscience*, **5** (5), 313–317.
- Zappa, G., L. C. Shaffrey, and K. I. Hodges, 2013: The Ability of CMIP5 Models to Simulate North Atlantic Extratropical Cyclones^{*}. Journal of Climate, **26** (15), 5379–5396.

Balance and boundary conditions

- Balance condition
 - The horizontal velocity vector \mathbf{v} can be divided into a nondivergent part \mathbf{v}_{ψ} and an irrotational part \mathbf{v}_{χ} (Holton and Hakim, 2013): $\mathbf{v} = \mathbf{v}_{\psi} + \mathbf{v}_{\chi}$, where $\nabla \cdot \mathbf{v}_{\psi} = 0$ and $\nabla \times \mathbf{v}_{\chi} = 0$.
 - The balance condition assumes that the magnitude of the irrotational component of the wind is much smaller than the magnitude of the nondivergent wind $(|\mathbf{v}_{\chi}| \ll |\mathbf{v}_{\psi}|)$, so that terms involving \mathbf{v}_{χ} can be neglected.
- Boundary conditions
 - Lateral boundary conditions: Φ and Ψ (Dirichlet boundary conditions)
 - Vertical boundary conditions: $\frac{\partial \Phi}{\partial z}$ and $\frac{\partial \Psi}{\partial z}$ (Neumann boundary conditions)