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Changing weather extremes
Why it isn’t an “alternative fact”
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What is an “alternative fact”?
• Phrase used by Kellyanne Conway

– on Meet the Press on 17 January 2017 
• In defending White House Press 

Secretary Sean Spicer 
– concerning claims about the size of the 

Presidential inauguration crowd
• A demonstrable falsehood
• Distinct from the notion

– that there might be different interpretations 
of the facts, or that

– knowledge is constructed, and has a social 
context
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https://en.wikipedia.org/wiki/File:Kellyanne_Conway_by_Gage_Skidmore_3.jpg
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When talking about climate change
… or any other scientific issue

• We need to distinguish between
– the facts, and
– the information that they convey

• Not all facts convey scientifically interpretable 
information, or sometimes convey only incomplete 
information
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6Photo: F. Zwiers (Smoke filled sunset, Aug, 2014, Winthrop, WA)

The rest of this talk is about extremes
• Long term trends in extremes 
• Individual extreme events examples
• Conclusions
• Communications
• Questions

• Messages
• Human influence IS affecting extremes, but
• Some aspects of the public narrative are 

ahead of the science



7Photo: F. Zwiers (Ring-Necked Duck, Victoria)

Long term trends in extremes
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Usual assumptions
• Key external drivers of climate change are known
• Signals and noise are additive
• Model simulated signal patterns ok, magnitude less certain

• Postulate a set of change “signals” that might be 
present in observations

• Look for those signals
• Eliminate other causes

General idea

leads to a simple regression formulation
• Example: Global surface temperature
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http://www.nature.com/nature/journal/v407/n6804/full/407571a0.html
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Photo: F. Zwiers (Lanzhou)

Temperature extremes

See WCRP summer school on extremes, ICTP, July, 2014

http://www.wcrp-climate.org/ictp2014-about
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Temperature extremes
• Studies looking at long term changes find 

– More frequent and more intense warm extremes 
– Less frequent and less intense cold extremes

• Changes are found to be largely due to human 
influence (i.e., greenhouse gas increases)

• Supported by very high confidence in our 
understanding of the change in mean temperatures

• Extremes warmed during the “global warming hiatus”
– Seneviratne et al, 2014; Sillmann et al, 2014, Johnson et al, 2015

http://adsabs.harvard.edu/abs/2015AGUFMGC44A..03J
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http://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_Chapter02_FINAL.pdf
http://onlinelibrary.wiley.com/store/10.1002/jgrd.50150/asset/jgrd50150.pdf?v=1&t=iksqxyvr&s=5787e8fc12bc1903941903f9f28f5a2df0c9914f&systemMessage=Wiley+Online+Library+will+be+unavailable+on+Saturday+27th+February+from+09:00-14:00+GMT+/+04:00-09:00+EST+/+17:00-22:00+SGT+for+essential+maintenance.++Apologies+for+the+inconvenience.
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http://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_Chapter02_FINAL.pdf
http://onlinelibrary.wiley.com/store/10.1002/jgrd.50150/asset/jgrd50150.pdf?v=1&t=iksqxyvr&s=5787e8fc12bc1903941903f9f28f5a2df0c9914f&systemMessage=Wiley+Online+Library+will+be+unavailable+on+Saturday+27th+February+from+09:00-14:00+GMT+/+04:00-09:00+EST+/+17:00-22:00+SGT+for+essential+maintenance.++Apologies+for+the+inconvenience.
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TNn - Coldest night annually
TXn - Coldest day annually

TNx - Warmest night annually
TXx - Warmest day annually

Change in waiting times for 20-
year events (1990’s vs 1960’s)
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Assessment of cause and effect
• Change in frequency and 

intensity of rare events 
primarily caused by human 
influence

• 1960’s cold events only half 
as frequent by 1990’s

• 1960’s warm events 
perhaps twice as frequent 
by 1990’s
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Limitations
• Observational data

– Need long homogeneous records of daily data
– Incomplete geographical coverage
– Traceability, updatability of indices 
– Order of operations

• Process understanding and representation in models, 
such as
– Coupled land-atmosphere feedback processes
– Blocking

• Analysis methodology



18Photo: F. Zwiers (Longji)

Precipitation extremes
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• Observational studies suggest intensification is occurring
• Expectation of intensification is supported by attribution of 

– global warming 
– atmospheric water vapour content increase
– large scale changes in mean precipitation
– ocean surface salinity changes

• Only a few D&A studies to date on extreme precipitation 
– detect human influence at the ”global” scale

• Considerable challenges remain in understanding regional 
precipitation change (e.g., Sarojini et al., 2016)

• Local detection of change is very hard

Precipitation extremes

https://www.nature.com/nclimate/journal/v6/n7/pdf/nclimate2976.pdf
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Percentage of stations globally with statistically  significant 
trends in annual maximum 1-day precipitation

Based on 8376 stations with 30-years or more data in period 1900-2009

Westra et al 2013, Fig. 3

Increases

Observed 
(8.6%)

Expected (~2.5%)

Decreases

Observed 
(2.0%)

Expected (~2.5%)

Overall 
intensification 
based on station 
data is ~7% per 
°C of global 
warming
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US trends in daily and hourly extreme precipitation
Annual 

maximum 
1-hour 

amount

Annual 
maximum 

24-hour 
amount

Barbero et al, 2017, Fig. 1
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Detection and attribution results
We can detect the human influence on precipitation extremes 
over land:

• Climate models with anthropogenic external forcing 
intensify precipitation similarly to observed

• Climate models with only natural external forcing do not 
intensify precipitation

Attributed intensification:
• 5.2% increase per degree of warming
• uncertainty range [1.3 – 9.3]% 

Estimated waiting time for 1950’s 20-year event:
~15-yr in the early 2000’s 

Zhang et al., 2013 (see also Min et al 2011)

http://onlinelibrary.wiley.com/doi/10.1002/grl.51010/full
http://www.nature.com/nature/journal/v470/n7334/full/nature09763.html
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Limitations
• Data (availability, spatial coverage, record length, quality, 

observational uncertainty between datasets)
• Confidence in models (e.g., circulation impacts, topography, 

parameterization of sub-grid scale processes)
• Low signal-to-noise ratio with possibly offsetting influences 

from GHGs and aerosols (may be different for means than 
for extremes) 

• Understanding of spatial and temporal scaling (e.g., Zhang 
et al., 2017)

• Characterization of spatial dependence

https://www.nature.com/ngeo/journal/v10/n4/full/ngeo2911.html
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Terrestrial hydrological cycle

Photo: F. Zwiers (Canmore, AB)
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• Few studies linking change in mean hydrologic conditions to GHGs 
– Barnett et al, 2008, Fyfe et al., 2017 (Western US)
– Najafi et al, 2016, 2017 (part of BC)
– Detect the effect of warming on snowpack and/or streamflow characteristics
– Also detect the effect of warming on snow cover extent

• Strong need for study of extremes given impacts
• Challenges include

– Data (very often inhomogenious due to river regulation)
– Complex spatial variation in hydrologic sensitivity (Grieve et al, 2014; Kumar et 

al, 2015) which complicates robust detection of responses (Kumar et al, 2016) 
– Complexity and uncertainty in the modelling chain
– Confounding effects

Hydrologic extremes

https://www.nature.com/articles/ncomms14996
https://agu.confex.com/agu/fm15/meetingapp.cgi/Paper/81046
http://journals.ametsoc.org/doi/pdf/10.1175/JCLI-D-16-0189.1
http://onlinelibrary.wiley.com/doi/10.1002/2015GL066858/epdf
http://onlinelibrary.wiley.com/doi/10.1002/2016WR018607/abstract


26Photo: F. Zwiers Photo: F. Zwiers (Ucluelet)

Storms
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• Some evidence of attributable change in surface pressure 
distribution (indicative of long-term circulation change)

• Few, if any, D&A studies of long-term change in position of 
extratropical storm tracks, storm frequency or intensity

• Challenges include
– Data (type, source, length of record, homogeneity)
– Models (eg, broad range of frequency biases in the occurrence of 

explosive cyclones in CMIP5 class models – Seiler and Zwiers, 
2015a, 2015b) 

– Dynamical downscaling with a regional climate model helps reduce 
bias somewhat (Seiler et al, 2017)

Storms

http://link.springer.com/article/10.1007/s00382-015-2642-x
http://link.springer.com/article/10.1007/s00382-015-2791-y
http://download.springer.com/static/pdf/705/art:10.1007/s00382-017-3634-9.pdf?originUrl=http://link.springer.com/article/10.1007/s00382-017-3634-9&token2=exp=1496180554%7Eacl=/static/pdf/705/art:10.1007/s00382


28Photo: F. Zwiers (Jordan River, gathering storm)

Event attribution
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Extreme event attribution
• The public asks: Did human influence on the climate system …

– Cause the event? 
• Most studies ask: Did it …

– Affect its odds?
– Alter its magnitude?

• Usual approach is compare factual and “counterfactual” 
climates using climate models
– Counterfactual  the world that might have been if we had not emitted 

the ~600GtC (and counting) that have been emitted since preindustrial
• Shepherd (2016) defines this as “risk based” 

– Contrasts it with a “storyline” based approach
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Understanding of effect of climate change on event type

Recently 
assessed 
by US NAS

http://www.nap.edu/catalog/21852/attribution-of-extreme-weather-events-in-the-context-of-climate-change


31Photo: F. Zwiers (Juan de Fuca sunset)

“Framing” affects the answer



32

• How is the ”event” defined?
• What sources of unforced variability 

are controlled?
– No sources control?
– Sea-surface temperature pattern?
– Circulation pattern?

• What question is asked about the 
defined event?
– Likelihood?
– Frequency?

20 July – 20 Aug 2003 vs the same period 
averaged over 2000-2004 excluding 2003 

Courtesy Reto Stockli and Robert Simmon (NASA/Wikipedia)
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JJA temperature anomalies relative to 1961-1990

Framing  How the 
question is posed

http://earthobservatory.nasa.gov/IOTD/view.php?id=3714%20(image),%20Public%20Domain,%20https://commons.wikimedia.org/w/index.php?curid=450988
http://www.nature.com/nature/journal/v432/n7017/abs/nature03089.html


33Photo: F. Zwiers

Event Attribution Examples



34Edmonton Expo Centre at Northlands. Photo, Chris Bolin

Mandatory evacuation. Photo, Jason Franson/CP
Avian escape. Photo, Mark Blinch/Reuters

• 590,000 ha burnt
• 88,000 people displaced
• 2 fatalities (indirect)
• 2400 homes and 665 work 

camp units destroyed
• $3.6 B CDN insured losses

Fort McMurray Fire

Timberlea. Photo, Chris Bolin

http://www.macleans.ca/wp-content/uploads/2016/05/MAC21_NARRATIVE_POST10.jpg
http://www.macleans.ca/wp-content/uploads/2016/05/MAC21_NARRATIVE_1600_01.jpg
http://www.macleans.ca/wp-content/uploads/2016/05/MAY9_CAMPBELL_POST01.jpg
http://www.macleans.ca/wp-content/uploads/2016/05/MAC21_NARRATIVE_POST13.jpg


35

Fire risk (Kirchmeier-Young et al, 2017)
• We ask whether human induced 

climate change has affected fire 
risk in the“Southern Prairie” 
Homogeneous Fire Regime zone

• Measure fire risk using “CWFIS” 
system indicators
– Fire Weather Index
– Fine Fuels Moisture Code
– Duff Moisture Code
– Drought Code

Annual area burned 1981-2010
Canadian National Fire Database

Southern Prairie HFR Zone
• These indices depend on temperature, relative 

humidity, wind speed, and precipitation
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Fire Weather Index for Southern Prairies HFR for the 
current decade (2011-2020)

FWI
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CWFIS “Extreme” FWI level = 30
Observed FWI level in Fort Mac area ≈ 40
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Calgary flood, June, 2013 

Calgary East Village (June 25, 2013), courtesy Ryan L.C. Quan

• 100,000 displaced, 5 deaths
• Costliest (?) disaster event in Canadian history
• Estimated $5.7B USD loss ($1.65B USD insured)

http://www.flickr.com/photos/ryan_quan/9147836698/
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Calgary floods
Distribution of 
annual May-June 
maximum 1-day 
southern-Alberta 
precipitation in 
CRCM5 under 
factual and counter-
factual conditions 
(conditional on the 
prevailing global 
pattern of SST 
anomalies)

Frequency doubles (~25-yr  ~12 yr)

Magnitude increases ~10%

Southern Alberta MJ max 1-day precip

FAR ≈ 0.5

Teufel et al (2016)

http://download.springer.com/static/pdf/96/art:10.1007/s00382-016-3239-8.pdf?originUrl=http://link.springer.com/article/10.1007/s00382-016-3239-8&token2=exp=1476837200%7Eacl=/static/pdf/96/art:10.1007/s00382-016-3239-8.pdf?originUrl=http://link.springer.com/article/10.1007/s00382-016-3239-8*%7Ehmac=d7830398b9932c174860cd45d5472c8cd738ac4db8014ba476bebf2474a29dc4
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Record low Arctic sea ice cover - 2012

Photo: F. Zwiers (approach to Alert, Aug., 2009)
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Arctic Sea Ice Extent (courtesy NSIDC)
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Arctic sea-ice extent event attribution

All models indicate an event of a magnitude equal to or more extreme than the 
2012 record minimum would be virtually impossible under natural forcing alone. 

Anthropogenic forcing is a necessary, but not sufficient cause.
Kirchmeier-Young et al (2017)

Risk ratio

𝑝𝑝𝐴𝐴𝐴𝐴𝐴𝐴
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𝑝𝑝𝐴𝐴𝐴𝐴𝐴𝐴 − 𝑝𝑝𝑁𝑁𝑁𝑁𝑁𝑁
𝑝𝑝𝐴𝐴𝐴𝐴𝐴𝐴

Fraction of attributable risk

http://journals.ametsoc.org/doi/abs/10.1175/JCLI-D-16-0412.1


42Photo: F. Zwiers (Yangtze River)

China’s Hot Summer of 2013

• Impacts included estimated $10B USD 
agricultural yield loss
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How rare was JJA of 2013?
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• Estimated event frequency
• once in 270-years in control simulations 
• once in 29-years in “reconstructed” observations
• once in 4.3 years relative to the climate of 2013

• Fraction of Attributable Risk in 2013: (p1 – p0)/p1≈ 0.984
• Prob of “sufficient causation”: PS=1-((1-p1)/(1-p0)) ≈ 0.23

http://www.nature.com/nclimate/journal/v4/n12/full/nclimate2410.html
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Projected 
event 
frequency

RCP4.5
RCP8.5

Mean temp

Frequency+ +× ×

23%, 4.3-yr
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Conclusions

Photo: F. Zwiers (Ucluelet)
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Conclusions
• Understanding of the impact of anthropogenic forcing on 

many types of observed extremes remains limited
– Relatively high confidence for temperature extremes
– Some confidence in precipitation extremes
– Can say relatively little about storms, droughts, floods

• Often very limited by data (models and methods can be 
improved; historical data is much harder)

• Need further methodological development and improved 
process understanding

• Event attribution is increasingly undertaken
– Still much to do to develop methods and capabilities, understand 

implications of framing choices, and develop objective evaluation 
techniques



47Photo: F. Zwiers (Fern uncurling, Botanical Beach)

Communications 
– bringing science into focus
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Communications
• Three kinds of opportunities linked to extreme events

– During the event
– During the (extended) media cycle
– When eventual full studies are complete

• Responsibility as scientists is distinct from that as individuals
– It is to communicate the facts and the derived scientific information. 
– To ensure both can be comprehended by users, and that the distinction 

between facts and information is understood. 
• We need to …

– understand that the receptivity of users to our messages is affected by 
how we direct our communication

– teach users to challenge facts and information, and defend science.



49Photo: F. Zwiers

Questions?
https://www.pacificclimate.org/
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Mean daily precipitation in the MIROC4h 
grid box centered on 49.1N, 123.2W (Vancouver)
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For some evaluation of CMIP5 models wrt precipitation extremes see 
• for indices, Sillmann et al (2013, JGR),
• for long-period return values, Kharin et al (2013, Climatic Change)
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CMIP5 RCP4.5 precipitation projections

%

Change in 20-yr extremes relative to 1986-2005

Kharin et al (2013, Fig. 4)
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CMIP5 Projections of 20-yr 1-day events

Event magnitude
(relative to 1986-2006)

Return period
(relative to 1986-2006)

Kharin et al (2013, Fig. 2)
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CMIP5 precipitation sensitivity

Planetary 
sensitivity of 

20-year extremes

Sensitivity of 
global mean 
precipitation

Kharin et al (2013, Fig. 5)
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