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Introduc-on	
•  Enormous interest in event attribution 

–  Event and media driven (eg, Calgary floods, Fort 
McMurray fires) 

–  Questions are mostly retrospective 

•  Requires “rapid response” science 
–  Recently assessed by US National Academies of 

Science 
•  Topics for this talk 

–  Detection and attribution of long-term change 
–  Event attribution 
–  Discussion 
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Detec-on	and	A(ribu-on		
of	long	term	change	
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D&A	of	long-term	change	
•  Definitions 

–  Detection – identifying that a change has occurred  
–  Attribution – evaluating contributions from causal factors 

•  Methods 
–  Involve simple statistical models 
–  Complex implementation due to data volumes (which are 

both small and large) 
•  Usual assumptions 

–  Key forcings have been identified 
–  Signals and noise are additive 
–  Climate models simulate large-scale patterns of response 

correctly 
•  Leads to a regression formulation 
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It	is	extremely	likely	that	human	influence	has	been	the	dominant	
cause	of	the	observed	warming	since	the	mid-20th	century.	

Final Draft (7 June 2013) Chapter 10 IPCC WGI Fifth Assessment Report 

Do Not Cite, Quote or Distribute 10-113 Total pages: 132 

 

 
 
Figure 10.5: Assessed likely ranges (whiskers) and their mid-points (bars) for attributable warming trends over the 
1951–2010 period due to well-mixed greenhouse gases (GHG), other anthropogenic forings (OA), natural forcings 
(NAT), combined anthropogenic forcings (ANT), and internal variability. The HadCRUT4 observations are shown in 
black with the 5–95% uncertainty range due to observational uncertainty in this record (Morice et al., 2012). 
 

  Global warming attribution 

Figure TS.10, IPCC WG1 AR5 

Trend in global surface 
temperature (1951-2010) 

Jones	et	al,	2013	

All forcings 

Global mean temperature 
relative to 1880-1919 

See also Figure 10.1, IPCC WG1 AR5 
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Detec-on	and	A(ribu-on	Summary	
•  Concerned with long term change 
•  Quantifies how the mean state (or some other 

statistic) has changed over time due to forcing 

•  Examples 
–  Global and regional mean temperature 

•  Large body of literature, very high confidence 

–  Temperature extremes 
•  Growing literature, high confidence 

–  Precipitation extremes 
•  Emerging evidence, medium or lower confidence 
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Temperature	Extremes	

FIG. 3. Estimated waiting times (yr) and their 5% and 95% uncertainty limits for 1960s 20-yr return values of annual extreme daily temperatures in the 1990s climate based on extreme
value analyses of observed extreme temperatures fitted to GEV distributions whose location parameters vary with simulated extreme temperature responses to ALL or ANT forcings. The
red, green, blue, and purple bars correspond to TNn, TXn, TNx, and TXx, respectively.
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FIG. 3. Estimated waiting times (yr) and their 5% and 95% uncertainty limits for 1960s 20-yr return values of annual extreme daily temperatures in the 1990s climate based on extreme
value analyses of observed extreme temperatures fitted to GEV distributions whose location parameters vary with simulated extreme temperature responses to ALL or ANT forcings. The
red, green, blue, and purple bars correspond to TNn, TXn, TNx, and TXx, respectively.
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Zwiers et al., 2011 
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Event	a(ribu-on		

Calgary East Village (June 25, 2013), courtesy Ryan L.C. Quan 
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Event	a(ribu-on	
•  The public asks: Did human influence on the 

climate system … 
–  Cause the event?  

•  Most studies ask: Did it … 
–  Affect its odds? 
–  Alter its magnitude? 

•  Some think we should reframe the question … 
–  Rather than “Did human influence …” (which requires 

comparison with a counterfactual world)  
–  Ask “How much (eg, of a given storm’s precipitation) is 

due to the attributed warming (eg, in the storm’s 
moisture source area)” (after Trenberth et al, 2015) 
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Most	studies	

•  Compare factual and “counterfactual” climates 
–  Counterfactual à the world that might have been if we 

had not emitted the ~600GtC that have been emitted 
since preindustrial 

•  These studies almost always 
–  Define a class of events rather than a single event 
–  Use a probabilistic approach 

•  Shepherd (2016) defines this as “risk based”  
–  Contrasts it with a “storyline” based approach 
–  i.e., analysis of the specific event that occurred 
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“Framing”	event	a(ribu-on	studies	

•  Event type  
–  Class vs individual 

•  Analysis approach and approach 
–  “risk based” or “storyline” 

•  Event definition 
–  What spatial scale, duration, etc 

•  Which risk-based question 
–  Did climate change alter the odds, or the magnitude? 

•  What factors should be taken into account 
–  “Conditioning” 
–  e.g., coincident SST anomaly pattern 

The NAS 
Report (2016) 
struggled with 
these 
distinctions 
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“Condi-oning”	examples	

•  Did human influence alter its likelihood 

 

•  Did human influence alter its magnitude  
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•  Russian July 2010 heatwave 
–  Dole et al (2011) 

•  human influence did not 
substantially affect magnitude 

–  Rahmstorf and Coumou (2011) 

–  Otto et al (2012)  
•  not necessarily inconsistent  
•  a small increment in magnitude 

can lead to a large change in 
likelihood 

the northern hemisphere and compare well with reanalysis
data. However, there is more variability in the observations
which is to be expected as the regression is made with much
less data. This comparison, as also used, for example, in an
attribution study by Pall et al. [2011], provides confidence
in the model’s ability to represent the relevant pattern of
atmospheric circulation.
[14] To identify conditions comparable to the heat wave in

2010 we regress the pattern resulting from the linear
regression above with the geopotential height anomalies
over western Russia. If the temperature and geopotential
height anomaly were perfectly correlated over western
Russia, this new regression coefficient plotted against the
mean temperature over that region would lie perfectly on the
one-to-one line. Figure 3b shows that the geopotential height
anomalies are scattered along that line, indicating that the
regression pattern is an effective, but far from perfect, pre-
dictor for Russian temperatures.
[15] The dot representing the observed conditions in 2010

is located close to the one-to-one line and much more
towards the right upper corner accounting for the exceptional
heat wave. Hence, conditions in 2010 represent an amplifi-
cation of this temperature-geopotential height condition, not
fundamentally differing conditions. Figure 3a shows the
mean temperatures over the region of interest plotted against
the mean geopotential height. In this figure the model data is
shifted towards higher temperatures, indicating a model bias
towards too hot conditions. Furthermore the spread of the
geopotential heights in the model data is much larger than in
the observations. For the one-to-one line being the line of
perfect correlation, and thus serving as an index for heat
waves, these two biases need to be addressed. We have done
this by subtracting the difference of 3°C between model and
observed mean temperatures and corrected temperature and
geopotential height anomalies by scaling to give the same

standard deviation as the observations. After removing the
bias the model data lies along the one-to-one line with the
ERA data, so we use this position on the line as an index to
studying the magnitude and return period of heat waves in
western Russia. However, further studies with larger
ensembles and inducing perturbed physics parameters might
address the bias more satisfactorily.
[16] Taking the heat wave index defined in this way, the

projection of the dots in Figure 3b onto the one-to-one line,
we can assess the return period of a July 2010 event, by
plotting this index against the size of the sample divided by
the rank of the index within the sample. Figure 4 displays the
results of this analysis of the Russian heat wave area tem-
perature equivalents given by the heat wave index in the
simulations of the 1960s and the 2000s. It shows a marked
change in the distribution between the two decades and that
in the 1960s a 2010-magnitude heat wave was to be expec-
ted every 99 years whereas in the 2000s this has changed to
every 33 years. Due to the use of distributed computing the
number of ensemble members per years is not constant. In
the sixties we have an average of 215 ensemble members per
year with a standard deviation of 120 and in 2000–2009 an
average of 67 ensemble members per year with a standard
deviation of 27. For 2010 we use an ensemble of 564
members per year. We show aggregated results here,
emphasizing 2010 in the return times. However, excluding
the year 2010 from calculating return times for Figure 4 is
visually the same. Thus the simulated expected frequency of
occurrence of an extreme Russian heat wave has tripled due
to the large-scale warming within the last four decades. Note
that this assessment is based on the observed magnitude of
the event which is useful within these illustrative results and
especially when interested in this magnitude.
[17] In contrast to return times of precipitation events like

river runoff [Pall et al., 2011] the lines in Figure 4 are not
straight as would be expected for Pareto distributed vari-
ables. Note that, contrary to the assumption of, e.g., Stott
et al. [2004] and Allen et al. [2007], the actual value of
the threshold matters for the fraction of attributable risk
(FAR) analysis of heat waves, so the issue of model bias is
important. We have attempted to correct the bias in a sen-
sible and effective way but this result depends on that cor-
rection and should thus be considered as illustrative only.
However it corroborates the assumption of the empirical
analysis above that the distribution shifts but does not seem
to change, since both lines are parallel. It serves, further-
more, to demonstrate the methodological point in relating
the studies by D11 and RC11. It also underlines the impor-
tance, when assessing the FAR, of both the magnitude of an
event and the return period [Allen, 2003; Stone and Allen,
2005].

3. Conclusion

[18] D11 approach the question of whether or not the
Russian heat wave of 2010 might have been anticipated
from a seasonal forecasting perspective, thoroughly analyz-
ing the regional data and atmospheric conditions leading to
the heat wave.
[19] RC11 take a different approach by fitting a non-linear

trend to central Russian temperatures and showing that the
warming which has occurred in this region since the 1960s
has increased the risk of a heat wave that set a new

Figure 4. Return periods of temperature-geopotential
height conditions in the model for the 1960s (green) and
the 2000s (blue) and in ERA-Interim for 1979–2010 (black).
The vertical black arrow shows the anomaly of the Russian
heat wave 2010 (black horizontal line) compared to the July
mean temperatures of the 1960s (dashed line). The vertical
red arrow gives the increase in the magnitude of the heat
wave due to the shift of the distribution whereas the horizon-
tal red arrow shows the change in the return period.

OTTO ET AL.: RUSSIAN HEAT WAVE 2010 L04702L04702

4 of 5

Otto et al, 2012 

Different questions can lead to 
seemingly contradictory conclusions 

!"#$ ! !"#$%&' !!
≈ 5 ∗ !"#$(!|¬!"#$%&')!
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Recent	examples	
•  China’s very hot summer of 2013 

•  Sun et al. (2014) 
•  Condition only on anthropogenic forcing 

•  Calgary floods 
•  Teufel et al (submitted) 
•  Condition on anthropogenic forcing and SSTs 
•  Uses both risk based and storyline approachs 

•  Arctic low sea-ice extent events 
•  Kirchmeier-Young et al (submitted) 
•  Extreme low summer minimum of Sept, 2012 
•  Extreme low winter maximum of March, 2015  
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China’s	Summer	of	2013	

Photo: F. Zwiers (Lijiang – Black Dragon Pool) 
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Eastern China is densely observed 
 

• 1749 stations (1955 onwards) 
• JJA mean temperature increased 

0.82°C over 1955-2013 
•  records were broken at more 

than 45% of stations in JJA 2013 

JJA mean temperature in Eastern China	
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The multi-model ensemble mean (ALL forcing) 
well simulates the observed temperature record. 	

Observed and simulated JJA mean 
temperature in Eastern China (1955-2012)	

125 (26) 
49 (12) 

Anomalies relative to 1955-1984 

Sun et al, Nature Climate Change, 2014 
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•  ALL forcing à 0.82°C (0.57°C, 1.07°C)  
•  NAT forcing à 0.03°C (-0.00°C, 0.07°C)  
•  Urban warming may be responsible for part of the “ALL” 

attributed warming - possibly 0.21°C (0.16°C, 0.26°C) 

Detec-on	and	a(ribu-on	results	for	
change	JJA	climate	over	1955-2012 

NATURE CLIMATE CHANGE DOI: 10.1038/NCLIMATE2410 LETTERS
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Figure 3 | Scaling factors and attributable warming. Best estimates of the
scaling factors and their 5–95% uncertainty ranges (left) and corresponding
attributable warming and their 5–95% uncertainty ranges (right) from
one-signal (ALL) and two-signal analyses (ANT and NAT) of Eastern China
5-year mean summer (June–August) temperatures for 1955–2012. In the
one-signal analysis, the observed temperature is regressed onto the
multi-model mean responses to ALL forcing. In the two-signal analyses, the
observed temperature is regressed onto the multi-model mean temperature
response to NAT and ANT (di�erence between responses to ALL and NAT
from available simulations) simultaneously. Attributable warming is
estimated as the linear least-square trends of the relevant time series
multiplied by corresponding scaling factors. OBS represents the linear
least-square estimate of the trend from the observation for 1955–2012.

temperature anomalies at or above 1.1 �C in the control simulations
and in the reconstructed observations averaged over the 59-year
period are 0.37% and 3.48%, respectively. The corresponding
90% confidence intervals are estimated to be 0.29%–0.44%
and 1.51%–6.90%, respectively (Supplementary Information). We
estimate therefore that the observed record high 2013 summer
temperature would be roughly a once-in-270-year event (90%
confidence interval 227–344 years) in the unperturbed world and
that it was a once-in-29-year event (90% confidence interval 15–66
years) averaged over the 59-year observed record for 1955–2013.
However, the background climate appropriate to 2013 is very likely
warmer than the average for 1955–2013; thus, as we discuss next,
the current expected waiting time between extreme heat events
such as that of summer 2013 is much less than 29 years. We
extend the reconstructed observations to the future by adding
observationally constrained future projections19 to pre-industrial
control simulations where the constraint is imposed by multiplying
the multi-model mean responses under the RCP4.5 and RCP8.5
emission scenarioswith the anthropogenic forcings response scaling
factor obtained from our two-signal analyses. In doing so, we
assume no changes in future interannual variability, and that the
scaling factor based on historical observations and the historical
combination of anthropogenic forcings remains appropriate for
future combinations of anthropogenic forcings, in which aerosols
are a less important factor. The result shows a very grim future
for the region in terms of the frequency of hot summers such as
that of 2013. We count the number of times temperature anomalies
exceed 1.1 �C within the 308 reconstructed observations or future
projections in individual years from 1955 to 2072 and find rapid
increases in event frequency (Fig. 4). Event frequency is about 23%
(90% confidence interval 8%–49%) for year 2013, corresponding
to an expected event recurrence time in 2013 of 4.3 years (90%
confidence interval 2.0–12.5 years), a more than 60-fold increase
from the natural state of the climate. This frequency increases to
50% by 2022 under RCP8.5 and by 2024 under RCP4.5. We also
examined the frequency for the five hottest summers occurring
in any given period of 13 or fewer consecutive years over a
59-year period in the control simulations and in the reconstructed
observations. We find that the probability of a clustering of the
five hottest years within a 13-year period or less is only 2.0% in
the control simulation, whereas it reaches 32% in the reconstructed
observations, with most of the occurrences near the end of series
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Figure 4 | Frequency of extreme hot summer recurrence. Time evolution of
the frequency of summer temperature anomalies above 1.1 �C, relative to
the 1955–1984 mean, in the reconstructed observations (1955–2013) and in
the observationally constrained projections (2014–2072) under RCP4.5
(plus) and RCP8.5 (cross) emission scenarios (left-hand scale). The solid
smooth curves are LOESS (local regression) fitting. The dashed curves
represent projected ensemble mean temperature changes under the
relevant emission scenarios (right-hand scale) and are shown here for
reference. Results for RCP4.5 and RCP8.5 are represented by red and
green, respectively.

due to the strong human-induced warming trend. This is a
16-fold increase.

Urbanization associated with rapid economic development is
known to have enhanced the Chinese temperature trend20–22. This
e�ect may have contributed approximately 0.2 �C to the summer
temperature warming in Eastern China (Supplementary Figs 7
and 8). Removing this e�ect from the observations and repeating
the above analyses reduces the best estimate of attributable warming
to anthropogenic forcing to 0.62 �C (Supplementary Fig. 9). The
combined e�ect of urbanization and anthropogenic influence to
the climate system is estimated to have a similar impact on the
recurrence of 2013-like summer heat in the past and the projected
future (Supplementary Fig. 10).

Our results indicate that the increasing frequency of extreme
summer heat in Eastern China is primarily attributable to the an-
thropogenic emission of greenhouse gases, with rapid urbanization
leading to the expansion of urban heat islands contributing as a sec-
ondary factor. Human influence has produced a very large increase
in the probability of clustering of extremely hot summers in the
twenty-first century and of long-lasting severe heatwaves such as
that of 2013. Extreme summer heat at the magnitude experienced
in 2013 is not a rare event when considered relative to the climate
appropriate to 2013; heat of this magnitude is estimated to be a
once-in-29-year event averaged over the 1955–2013 climates, with a
much lower frequency of occurrence at the beginning of the period,
rising to a once-in-4.3-year event in 2013. In contrast, such an
event is estimated to have been a once-in-270-year event under pre-
industrial conditions. Given the warming to which we are already
committed23, such summer heat is projected to become much more
frequent in the near future, regardless of future emission scenarios
even assuming, as we have done, that further urban development
will not contribute additionally to projected temperature changes
from external forcing on the climate system. It is projected that, by
2024, at least 50%of summerswill be as hot as the 2013 summer. The
increase in summer heat would inevitably lead to more widespread,
long-lasting and severe heatwaves in the region. The increase in
summer heat, combined with the region’s rising population and

NATURE CLIMATE CHANGE | ADVANCE ONLINE PUBLICATION | www.nature.com/natureclimatechange 3
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How rare was JJA of 2013?	
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•  Estimated event frequency 
•  once in 270-years in control simulations  
•  once in 29-years in “reconstructed” observations 
•  once in 4.3 years relative to the climate of 2013 

•  Fraction of Attributable Risk in 2013: (p1 – p0)/p1≈ 0.984 
•  Prob of “sufficient causation”: PS=1-((1-p1)/(1-p0)) ≈ 0.23 
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Calgary	flood,	2013		

Looking towards downtown Calgary from Riverfront Avenue (June 21, 2013), courtesy Ryan L.C. Quan 

«  This morning, 11:00 am 
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Calgary	floods	(Teufel	et	al,	submi(ed)	
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Figure 13. Return times of (a) average May-June evapotranspiration over the northern 

Great Plains, (b) maximum 1-day and (c) 3-day May-June precipitation over southern 

Alberta, in present-day (red) and pre-industrial ensembles (blue). Gray horizontal 

lines show (a) average evapotranspiration during the 14-21 June period, (b) average 

precipitation on 20 June and (c) average precipitation during the 19-21 June period, 

for the members of the CRCM5_Ref ensemble. Black dashed lines show (b) average 

precipitation across the region on 20 June and (c) average precipitation during the 19-

21 June period, as estimated from CaPA.  
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Calgary	floods	(Teufel	et	al,	submi(ed)	

Distribution of 
annual May-June 
maximum 1-day 
Bow River Basin 
precipitation in 
CRCM5 under 
factual and counter-
factual conditions 
(conditional on 
prevailing global 
pattern of SST 
anomalies) 
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Figure 14. Return times of maximum 1-day (left) and 3-day (right) May-June 

precipitation (top) and surface runoff (bottom) in present-day (red) and pre-industrial 

ensembles (blue), over the western BRB. Gray horizontal lines show the average 

precipitation (top) and average surface runoff (bottom) over this region on 20 June 

(left) and during the 19-21 June period (right) for the members of the CRCM5_Ref 

ensemble. Black dashed lines show the average precipitation over this region on 20 

June (top left) and during the 19-21 June period (top right), as estimated from CaPA. 
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Arc-c	sea-ice	extent	extremes	
«  This session, 2:45 pm 

Photo: F. Zwiers (approach to Alert, Aug., 2009) 
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Some	unresolved	issues	

Photo: F. Zwiers (Lijiang, Snow Mountain) 
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Retrospec-ve	vs	prospec-ve	
•  Most studies are prompted by specific events 
•  Alternatively, could study pre-defined events 
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estimates of the control temperature anomalies discussed 
in the previous paragraph and compute the FAR. Repeat-
ing this for all the pairs, we end up with a sample of FAR 
estimates from which the best estimate (50th percentile) and 
the uncertainty range (5th and 95th percentiles) are calcu-
lated. As a simpler alternative to the FAR, we also discuss 
our results in terms of changes in the probability of events.

4  Results

We first carry out an optimal fingerprinting analysis for 
each model individually by regressing simulated decadal 
temperature anomalies against the observed anomalies, 
as described in Sect. 3. Optimal fingerprinting, as applied 
here, decomposes the observations between the forced 
ANTHRO and NAT responses and internal variability. 
Figure 6 illustrates the ANTHRO and NAT scaling factors 
from analyses of changes in the annual mean, JJA and DJF 
temperature. The anthropogenic fingerprint is detected in 
all cases (scaling factors do not include zero). In most cases 

the models under- or over-estimates the ANTHRO response 
(as implied by scaling factors greater or less than unity) and 
the fingerprint needs to be scaled up or down to best match 
the observations. This scaling introduces observational con-
straints into our analysis expected to provide a more realis-
tic representation of the climate response than the one from 
unscaled model patterns. The weaker NAT fingerprint is not 
detected in the observations with the exception of seasonal 
temperature analyses with the GISS-E2-R model, though 
the signal detectability in this case is sensitive to the exact 
EOF truncation employed in the analysis. NAT scaling fac-
tors have greater uncertainties as the signal is weaker and 
hence more obscured by the effect of internal variability. 
The scaling factors from DJF analyses have moderately 
larger uncertainties compared to the ones for JJA and the 
annual mean, because of the greater land-area extent in 
the Northern Hemisphere, characterised by greater winter 
variability.

Jones et al. (2013) used several CMIP5 models (includ-
ing six of the models used here) to further partition the 
anthropogenic response between the greenhouse gas 
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agreement, except for colder regions where the signal to 
noise ratio is lower.

There are a few interesting points to make on the results 
shown in Figs. 10, 11 and 12. Firstly, it is evident that 
model uncertainty is more prominent in the FAR estimates 
for DJF, as there are more cold regions in this season. (We 
refer to “cold regions” in the paper, meaning either polar 
regions, or mid/high latitude regions during wintertime). 
The DJF estimates are also generally smaller, because the 
temperature distributions for the actual and natural climate 
are less separated (Fig. 9), which means there is a smaller 
discrepancy in the likelihood of exceeding thresholds with 
and without the effect of human influence. The smaller sep-
aration of the distributions results from the greater variabil-
ity in colder regions and the consequently smaller signal 
to noise ratio. In some cases it is not possible to estimate 
the FAR for DJF at high thresholds, as these events are so 
rare that extreme statistics can no longer provide reliable 
probability estimates. Figure 11 shows that in most regions 
the GISS-E2-R model yields notably lower estimates of 
the FAR for JJA. While all models produce a weak natural 
warming over the globe of 0.05–0.15 K during 2003–2012 

(possibly due to the recovery from preceding volcanic 
activity), it is only the NAT response of GISS-E2-R that 
is scaled up with positive scaling factors (Fig. 6b), which 
results in a warmer natural world and hence smaller FAR 
estimates. Finally, it is interesting to note that in the AMZ 
region, the FAR does not saturate to unity at high thresh-
olds, but may even decrease. While in other regions the 
PDFs with and without the anthropogenic effect have a 
similar shape, the natural world PDF in AMZ is broader. 
The FAR is therefore determined not only by a shift of the 
distribution to warmer temperatures, but also by the change 
in the PDF shape, which leads to a decrease at higher 
thresholds.

We have so far only looked at best estimates of the FAR 
for each GCM corresponding to the 50th percentile of 
the FAR distribution as discussed in Sect. 3. We will now 
consider uncertainties in the FAR represented by the 5th–
95th percentile range. We examine changes in the odds of 
a climatological 1-in-10 year event, which would provide 
a useful attribution assessment, for example, for the pur-
poses of adaptation planning. We derive temperature anom-
aly thresholds for the 1-in-10 year event in each region by 
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Some	unresolved	issues	
•  Event characterization 

–  Class vs individual, risk-based vs storyline 
–  Individual is not synonymous with storyline 
–  Data assimilation approach of Hannart et al (2016) 

•  Event definition 
•  Dependence on models 
•  Counterfactual state specification uncertainty 

when conditional approach is used  
•  Selection bias 

–  Need objective event selection criteria 
•  Communications 

–  At each stage media and response/recovery cycle 
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Questions? 


